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ABSTRACT
Automatic meeting analysis comprises the tasks of speaker

counting, speaker diarization, and the separation of overlapped
speech, followed by automatic speech recognition. This all has to be
carried out on arbitrarily long sessions and, ideally, in an online or
block-online manner. While significant progress has been made on
individual tasks, this paper presents for the first time an all-neural
approach to simultaneous speaker counting, diarization and source
separation. The NN-based estimator operates in a block-online fash-
ion and tracks speakers even if they remain silent for a number of
time blocks, thus learning a stable output order for the separated
sources. The neural network is recurrent over time as well as over
the number of sources. The simulation experiments show that state
of the art separation performance is achieved, while at the same
time delivering good diarization and source counting results. It even
generalizes well to an unseen large number of blocks.

Index Terms— Blind source separation, neural network, meet-
ing diarization, online processing, source counting.

1. INTRODUCTION
The automatic analysis of meetings promises to relieve humans from
tedious transcription and annotation work. It comprises the tasks:
(a) diarization, i.e., determining who is speaking when, (b) source
counting, i.e., estimating the number of speakers in a meeting, (c)
separating overlapped speech, i.e., carrying out (blind) source sep-
aration, and (d) recognizing the separated streams. All of these are
challenging tasks by themselves, which become even more demand-
ing considering the fact that meetings can be arbitrarily long, making
batch processing practically unfeasible and asking for block-online
processing instead.

In recent years, a substantial amount of research has been de-
voted to the meeting scenario [1–3]. One of the key challenges is the
separation and recognition of overlapped speech. Perhaps surpris-
ingly, even in professional meetings, the percentage of overlapped
speech, i.e., time segments where more than one person is speak-
ing, is in the order of 5% - 10%1, while in informal get-togethers it
can easily exceed 20%2. Recently, many promising neural network
(NN)-based single-channel approaches have been proposed to solve
the problem of source separation, such as Deep Clustering (DC) [4],
Deep Attractor Network (DAN) [5] and Permutation Invariant Train-
ing (PIT) [6, 7]. DC and DAN can be viewed as two-stage algo-
rithms, where in the first stage embedding vectors are estimated for
each time-frequency (T-F) bin. In the second stage, these embedding

1measured on the AMI meeting corpus [3].
2measured on the Computational Hearning in Multisource Environments

(CHiME-5) database.

vectors are clustered to obtain masks, from which the sources can be
recovered by applying the masks to the speech mixture. Note that the
number of sources has to be known to determine the correct number
of clusters. PIT, on the contrary, is a single-stage algorithm, be-
cause it lets NNs directly estimate source separation masks without
an explicit clustering step. In PIT, however, the network architecture
depends on the maximum number of sources to be extracted.

Considering this dependency on the number of sources, we pro-
posed the Recurrent Selective Attention Network (RSAN), which is
a purely NN-based mask estimator capable of, in theory, handling an
arbitrary number of speakers [8]. Specifically, RSAN is predicated
on a recurrent neural network (RNN) which can learn and determine
how many iterations, i.e., source extraction processes, have to be per-
formed to extract all sources [9]. It extracts one source at a time from
the mixture and repeats this process until all sources are extracted. In
experiments it achieved source separation performance comparable
with PIT, and excellent source number counting accuracy.

None of these NN-based source separation algorithms [4–8] has
been extended to block or block-online processing in realistic situ-
ations, which consist of long recordings of an arbitrary number of
intermittent speakers. Furthermore, a diarization component should
be included, which ensures that the same speaker appears always at
the same output node, even if he/she remains silent for some time.

Most conventional meeting diarization approaches perform
block-offline or block-online processing by carrying out the fol-
lowing two steps sequentially [1, 10–13]. First, at each block,
they perform separation (if necessary) and obtain speaker identity
information about each speaker in the block in the form of, e.g., i-
vectors [14], x-vectors [15], or spatial signatures [10, 11, 16]. Then,
the correct association of speaker identity information across block
boundaries, i.e., the eventual diarization result, is established by
clustering this information in offline [12,13] or online manners [11].
Here, block-offline processing is allowed to utilize future data,
while the block-online processing is not. In [17], joint separation
and diarization is attempted using spatial mixture models. This,
however, requires multichannel input and does not exploit spectral
information for speaker re-identification.

Here, we also consider separation and diarization jointly, how-
ever proposing a novel all-neural block-online approach that per-
forms source separation, source number counting and diarization
all together. The fact that the model is all-neural makes it possi-
ble to optimize the entire block-online process through error back-
propagation during NN training. Importantly, in theory, the proposed
method can handle any meeting situation where, for example, a new
speaker starts speaking in the middle of the meeting, or one or more
of the meeting attendees remain silent for a significant amount of
time after his/her first utterances. The method is an extension of [8].
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Fig. 1. Proposed method unrolled over two time blocks and a maxi-
mum of three iterations. In block 1, src1 , corresponding to back-
gound noise, and src2 are separated. Then, in block 2, the NN re-
ceives embedding vectors for src1 and src2, extracts src1, estimates
an empty mask for silent src2, and extracts the new src3 .

2. PROPOSED METHOD

2.1. Overall Structure
The algorithm works in a block-online manner and in each time
block it successively extracts the sources until no sources are found
anymore. Fig. 1 depicts the processing steps for the first two time
blocks and for up to three source extraction iterations per block.

Let b denote the time block index and i the iteration index within
a block. At every iteration in a block, the network receives three in-
puts: the input spectrogram Yb, a residual mask Rb,i−1 which is
the output of the previous iteration on the same block, and a speaker
adaptation input zb−1,i from the previous block. These inputs are
processed in a neural network (“NN”), which outputs a source sepa-
ration mask M̂b,i, an updated residual mask Rb,i, and a speaker em-
bedding zb,i, which represents the identity of the extracted speaker.

The residual mask can be seen as an attention map that, once
initialized with Rb,0 = 1 in every first iteration and updated in ev-
ery following iteration, guides the network where to attend in order
to extract a speaker that was not extracted in a previous iteration.
During test, the model decides when to stop the iterations based on
a thresholding operation applied to the mean of the residual mask;
it stops processing after iteration i, if the residual mask is virtually
empty, i.e., 1

TF

∑
tf [Rb,i]tf < tres-mask.

In the first processing block, b = 1, no speaker information is
available from the previous block. Therefore, the input speaker in-
formation is set to zero: z0,i = 0. Without guidance, the network
decides on its own in which order to extract the source signals. The
embedding vector zb,i is passed as an adaptation input to the next
time block, b + 1, and guides the i-th iteration on that block to ex-
tract the same speaker as in (b, i). This is related to the ’Speaker-
Beam’ concept to adapt a mask estimation network to a particular
speaker [18]. Thus, it is ensured that all blocks extract the speakers
in the same order. In Fig. 1, the different sources are indicated by
their color, and it can be seen that the green source (src 1) is always
extracted in the first, the red in the second and the blue in the third it-
eration. If a source happens to be silent in a particular block (see the
red source in block 2), then the mask is filled with zeros (M̂b,i = 0),

BLSTM

FC

×

FC

time-avg

affine

FC

FC

FC ×

+

norm

spk. emb.

m
as

k

gate

spk. adapt.

B
L

ST
M

-F
C

res-mask calculation

Rb,i

Yb Rb,i−1

zb−1,i zb,i

Mb,i

Fig. 2. Detailed structure of the neural network.

and the residual mask stays unmodified (Rb,i = Rb,i−1) in the iter-
ation i that is in charge of that source.

If the criterion to stop the speaker extraction iterations is not
met after extracting all speakers found in previous blocks, the model
increases the number of iterations to extract any new speaker (see
iteration 3 of block 2 in Fig. 1) until the stopping criterion is finally
fulfilled. To summarize, the network essentially attempts a guided
source extraction for each source found in earlier blocks, and per-
forms blind source separation on the remaining signal.

Note that the original RSAN [8] was formulated for processing
only one block and does not receive and output speaker embeddings,
whereas the proposed method, an extension of [8], has enhanced
capability of tracking speakers from block to block by doing so.

2.2. Details of used Neural Network
Fig. 2 depicts the detailed structure of the neural network “NN” in
Fig. 1. In the figure, “FC” corresponds to a fully connected layer
with a sigmoid activation, “affine” to affine transformation, “time-
avg” to time averaging, and “norm” to length normalization. The
network consists of a common stack of bidirectional long short term
memory (BLSTM) RNNs and a fully connected layer, hereafter de-
noted by BLSTM-FC, followed by multiple specialized parts (gray
dashed boxes): A speaker adaptation network, a mask estimation
network, a speaker embedding estimation network, and a gate to
control the update of speaker embedding vectors.

Two inputs to the NN, the spectrogram Yb and the residual mask
Rb,i−1, are concatenated before being passed to the BLSTM-FC,
and its output is passed through the speaker adaptation network,
whose output is fed into the three remaining specialized networks.

Speaker adaptation is achieved by multiplying the transformed
speaker adaptation input zb−1,i with the activations from BLSTM-
FC. By weighting the neurons based on the speaker embedding, the
network behavior is modified to extract a specific speaker [19].

The speaker embedding estimation is inspired by ’Deep Speaker’
[20]. Here, the output of a FC layer is averaged over time to con-
dense the speaker information of the whole block b into one embed-
ding vector zb,i. If a cosine distance-based loss function (described
later) is used, this vector is further transformed and normalized.

An optional gate is used to be able to pass the speaker embed-
ding vector unmodified to the next time block, if the speaker is silent
in the current block. The gating mechanism ensures that the speaker
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information is unmodified if that speaker is absent in the current
block, and updated if it is present.

Finally, a source separation mask M̂b,i is estimated by the mask
estimation network. This mask is used to update the residual mask
by subtracting it from the residual mask obtained from the previous
iteration and clipping to a range of [0, 1]:

Rb,i = max(Rb,i−1 − M̂b,i, 0). (1)

2.3. Training Objectives
During training, the network is unrolled over multiple blocks and
iterations and can be trained with back-propagation using the fol-
lowing multi-task cost function:

L = Ł(MMSE) + αŁ(res-mask) + βŁ(CE) + γŁ(TRIPLET), (2)

which is a weighted sum of the reconstruction loss Ł(MMSE), the
source counting loss Ł(res-mask), and the speaker embedding losses
Ł(CE) and Ł(TRIPLET).

The network is required to output a mask for a certain source
at each iteration, but the order in which they will be extracted when
they first appear, is not predictable. Thus, a permutation-invariant
loss function is required. Once a source was extracted and the per-
mutation was chosen to minimize the error on its first occurrence,
its position is fixed for all following blocks. This is achieved, as
explained earlier, by passing the embedding vectors from block to
block. Silent target masks Ab,i = 0 are inserted when a source was
active before, but is silent in the current block.

A permutation-invariant utterance-level mean square error
(MSE) loss can be used as in RSAN [8]:

Ł(MMSE) =
1

IB

∑
i,b

|M̂i,b �Yb −Aφb |
2, (3)

where I and B are the total number of iterations and blocks, respec-
tively. A is the target magnitude spectrogram. The permutation φb
for the b-th block is formed by concatenating the permutation used
for the previous block φb−1 with the permutation φ∗

b that minimizes
the separation error for the newly discovered sources in block b:

φb = [φb−1, φ
∗
b ]. (4)

To meet the iteration stopping criterion, the following loss func-
tion is employed, that pushes the values of the residual mask to 0 if
no speaker is remaining [8]:

Ł(res-mask) =
∑
b,tf

[
max

(
1−

∑
i

M̂b,i, 0

)]
tf

(5)

The speaker embedding vectors can be trained with a variety of
loss functions. Two possibilities are using an embedding layer fol-
lowed by a softmax cross-entropy (CE) loss, hereafter called Ł(CE),
and a triplet loss Ł(TRIPLET) [20].

The triplet loss ensures the cosine similarity between each pair
of embedding vectors for the same speaker is greater than for any
pair of vectors of differing speakers. Triplets are formed by first
choosing an anchor a, and then for that anchor a positive p and a
negative vector n, which belong to the same and a different speaker
than the anchor, respectively, from all embedding vectors of a mini-
batch. Based on the cosine similarity sani between the anchor and
the negative, and the cosine similarity sapi between the anchor and
the positive, the triplet loss for N triplets can be formulated as

Ł(TRIPLET) =

N∑
n=1

max(sann − sapn + δ, 0). (6)

where δ is a small positive constant.

3. EXPERIMENTS
We evaluate the proposed method in terms of source separation and
speaker diarization performance. It is compared with two conven-
tional methods and two simple extension of the conventional method
for block processing: (i) PIT and (ii) RSAN applied to the whole
mixture (called PIT batch and RSAN batch, hereafter), extensions
of RSAN to perform diarization in (iii) block-online and (iv) block-
offline manners. These simple extensions are 2-stage methods simi-
lar to the conventional methods in [1, 10–13], which, based on NN,
first separate the speakers, estimate associated speaker embedding
vectors, and then cluster the vectors to estimate the correct associa-
tion of speaker identity information among blocks. The methods (iii)
and (iv) are referred to as online and offline clustering, hereafter. As
the clustering method, we use a leader-follower and a hierarchical
clustering algorithm for online and offline clustering, respectively.
While the offline clustering is performed with the correct number of
speakers being given, the other methods estimate it. For reference
purpose, we also show the performance of an oracle experiment us-
ing the ideal ratio mask (IRM), and a guess-level performance which
assumes that exactly one speaker speaks all the time. Throughout the
experiments, the block size for all block processing schemes is set to
2.5 seconds, which amounts to about 150 time frames.

3.1. Data
We generated meeting-like training and test data based on utterances
taken from the single-channel WSJ0 corpus [21]. To generate a
speech mixture, one or two speech signals are mixed at a power ra-
tio uniformly chosen between 0 dB and 5 dB relative to each other.
Note, however, that the signals are not reverberant.

We created 55 hours of training data, which were organized as a
collection of 10-second (4-block) mixtures. Each mixture was gen-
erated such that the first 5 s contain a single or two speakers with a
probability of 50% each, while the second half contains silence/zero
speakers, a single speaker or two speakers with a probability of 15%,
55% and 30%, respectively.

For evaluation, we generated 16 hours of testing data in to-
tal, which comprises (a) 10 s (4-block) mixtures whose utterance
length and mixture characteristics match the training data, (b) 30 s
(12-block) long homogeneous mixtures and (c) 30 s (12-block) long
conversation-like mixtures. The sets of speakers used for training
and test are not overlapping. The homogeneous and conversation-
like mixtures are considerably longer than the training data, and
thus can be used to test generalization capability of the proposed
model. In the homogeneous mixtures, one speaker talks through-
out the whole mixture while another one starts speaking randomly
in the first half of the mixture and continues speaking till the end.
Since there are no cases where a speaker stops speaking in the mid-
dle of the test data, the proposed model does not have to remember
speakers over silent blocks. The conversation-like mixtures are gen-
erated such that the first 5 s of the test utterance contain a single or
two speakers (50% each), while the mixture in the remaining time is
generated such that it contains silence/zero, a single or two speakers
with a probability of 15%, 55% and 30%, respectively.

3.2. Network Configurations
Each neural network, including PIT and RSAN, had one fully con-
nected layer on top of two BLSTM layers. This is the BLSTM-FC
configuration referred to earlier. The speaker embedding dimension-
ality was set to 128. The speaker embedding estimation network
consisted of 3 fully connected layers with 50, 50 and 128 neurons,
respectively. The weight for Ł(res-mask) was set to α = 0.1.
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Table 1. SDR improvement, speaker diarization and speaker confusion error rates

Model (a) 4-block (b) 12-block homogeneous (c) 12-block conv.-like

SDR DER SCER SDR DER SCER SDR DER SCER
spk loss gate [dB] [%] [%] [dB] [%] [%] [dB] [%] [%]

Pr
op

os
ed 1 — — 19.4 4.2 3.1 7.5 5.5 5.3 11.5 7.8 6.5

2 — 3 18.5 4.0 2.6 7.6 5.2 4.0 11.7 6.6 4.9
3 CE 3 15.8 5.6 3.4 7.3 5.4 6.0 11.6 7.1 6.1
4 triplet 3 17.9 4.2 2.9 7.2 5.6 4.8 11.9 7.4 5.5

guess level — 47.1 25.0 — 45.4 27.4 — 38.8 27.4
ideal ratio mask (IRM) 28.9 0.8 0.0 14.2 1.0 0.0 24.0 0.8 0.1

B
as

el
in

e i PIT batch 13.3 14.5 4.3 6.8 6.7 5.1 10.9 9.8 4.4
ii RSAN batch 13.5 7.3 3.7 5.5 9.2 8.3 10.5 10.0 7.4
iii online clustering 8.2 15.8 9.8 — — — −10.0 52.1 37.8
iv offline clustering 10.9 9.7 4.5 3.2 17.5 7.9 5.3 15.8 6.2

We employed 4 different architectures for the proposed method
as in Table 1: Model (1) does not use the gating mechanism while
all other models (2), (3) and (4) do. Models (1) and (2) are trained
only using the reconstruction and residual mask losses, without a
speaker loss (β = γ = 0). Models (3) and (4) use the cross-entropy
(β = 0.01, γ = 0) and triplet (γ = 0.1, β = 0) losses, respectively.

3.3. Evaluation Metrics
We evaluate the performance in terms of signal-to-distortion ratio
(SDR), diarization error rate (DER) [22], and speaker confusion er-
ror rate (SCER). DER indicates the percentage of time that the sys-
tem outputs speech activity which is wrongly labeled:

DER =
#frames with wrongly estimated speaker

total #frames
× 100% (7)

The error consists of missed speaker time (MST), false active time
(FAT) and speaker error time (SET). Note that if the system confuses
speakers, i.e., it correctly labels speakers as active, but confuses its
output order, then this is not considered as an error in DER. There-
fore, SCER is additionally introduced as the percentage of time that
the system confuses the output order of the speakers:

SCER =
#frames with confused speaker labels

total #frames
× 100% (8)

The number of frames with confused speaker labels is determined by
comparing the optimal speaker assignment calculated for the whole
mixture with the speaker assignment calculated for each frame.

3.4. Results
As in Table 1, the proposed methods outperform all four baselines
i) - iv) in most cases in all three tested conditions in terms of SDR,
DER and SCER. The conventional two-stage methods, online clus-
tering and offline clustering, failed to find correct association of
speaker identity information among blocks, and thus tend to work
more poorly as the number of processed blocks increases. As ex-
pected, PIT batch and RSAN batch worked significantly better than
the two-stage methods. However, interestingly, the proposed method
generally worked better than these batch methods even though it per-
forms block-online processing.

Model (2) of the proposed method outperforms model (1) in
most scenarios, which shows the effectiveness of the gating function
in Fig. 2. Again, interestingly, model (2) also outperforms model

(3) and model (4) in almost all scenarios. This suggests that the
speaker embedding loss, be it Ł(CE) or Ł(TRIPLET), actually disturbs
the embedding process and the optimal adaptation vectors may con-
tain additional information other than the speaker identity, e.g., about
interfering signals. Looking at a 2-dim. projection of the embedding
space, we noticed that the embedding vectors form fairly condensed
clusters for each speaker if an embedding loss is used, while it was
not the case otherwise. Last but not least, the models performed very
well in source number counting (over 98% acc. in conv.-like data
and over 99% acc. in all other cases), which is reflected in low DER.
Some demos of the proposed method are available at [23].

4. RELATION TO PRIOR WORKS
Some researchers tried block-processing and online-processing
based on NN-based source separation. However, none of them has
the capability of performing diarization in realistic situations where
speakers can stop talking in the middle of the meeting and remain
silent for some time before they start talking again. In [24], PIT
is applied to each block, and then associations of estimated masks
between adjacent blocks are estimated by a simple cross-correlation
scheme. Clearly it cannot track speaker characteristics over silent
blocks. A method proposed in [25] performs source separation in a
frame-by-frame manner, by exploiting temporal dependencies and
continuity of the speech signal. Specifically, a certain number of
past frames of separated signals is used as additional input to a NN
which outputs separated signals for the current frame such that they
can smoothly continue from past context data. While it is similar to
the proposed method in a sense that it utilizes speaker information
appearing in the past, it cannot deal with long silent regions since
it can see only a limited past context of fixed length, e.g., 600 ms
in [25]. On the other hand, the proposed method can naturally
handle arbitrarily long silent regions, which we believe is a very
important property when dealing with real meeting scenarios.

5. CONCLUSIONS
In this paper, we proposed an all-neural mask estimator which is
capable of block-online processing and which can adaptively change
the number of output separation masks in each block. It can track
speakers even through silent blocks and detect new speakers in every
block. The experiments confirmed that the proposed method shows
promising performance, both in terms of separation performance and
in terms of diarization and speaker confusion error performance.
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