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ABSTRACT

This paper proposes a low algorithmic latency adaptation of
the deep clustering approach to speaker-independent speech
separation. It consists of three parts: a) the usage of long-
short-term-memory (LSTM) networks instead of their bidi-
rectional variant used in the original work, b) using a short
synthesis window (here 8 ms) required for low-latency oper-
ation, and, c) using a buffer in the beginning of audio mixture
to estimate cluster centres corresponding to constituent speak-
ers which are then utilized to separate speakers within the rest
of the signal. The buffer duration would serve as an initial-
ization phase after which the system is capable of operating
with 8 ms algorithmic latency. We evaluate our proposed
approach on two-speaker mixtures from Wall Street Journal
(WSJ0) corpus. We observe that the use of LSTM yields
around one dB lower SDR as compared to the baseline bidi-
rectional LSTM in terms of source to distortion ratio (SDR).
Moreover, using an 8 ms synthesis window instead of 32 ms
degrades the separation performance by around 2.1 dB as
compared to the baseline. Finally, we also report separation
performance with different buffer durations noting that sepa-
ration can be achieved even for buffer duration as low as 300
ms.

Index Terms— Monaural speech separation, Low la-
tency, Deep clustering.

1. INTRODUCTION

Single channel speech separation is the problem of recover-
ing the constituent speech signals from an acoustic mixture
signal when information from only a single microphone is
available [1]. In recent years, data-driven methods relying on
deep neural networks (DNN) [2, 3] have yielded dramatic im-
provements in performance in comparison to the previously
used methods, e.g., model-based approaches [4]) and matrix
factorization [5, 6]. In particular, speaker-independent speech
separation has been addressed by approaches like deep clus-
tering [7, 8], permutation invariant training [9], and more
recently deep attractor networks [10] which is the current
state-of-the-art. Improvements to the original deep clustering
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framework [7] have been proposed in terms of, e.g., better
objective functions [11]; and, improved regularization and
curriculum training [8]. These studies have considered of-
fline separation scenario where the signal to be separated is
available at once.

Low-latency processing is important when these DNN-
based methods are applied to applications like hearing aids
[12] and cochlear implants [13], In particular, for hearing
aids, the latency requirements are quite restrictive as the
sound is perceived by the listener via hearing aid as well as
the direct path. Several studies have documented the sub-
jective disturbance experienced by the listeners (e.g., [14]).
Notably, Agnew et al. [15] found the delays above 10 ms
to be objectionable while delays as low as 3 to 5 ms to be
noticeable by hearing-impaired listeners.

For the above applications, the offline DNN-based meth-
ods run into two main problems. Firstly, we do not have
access to the future temporal information hence DNN models
like bidirectional long-short-term-memory networks (BLSTM),
as used in [3, 16, 7, 8], cannot be used. Secondly, for short-
time Fourier transform (STFT) based systems, the algorithmic
latency is at least equal to the frame length of synthesis win-
dow used for signal reconstruction. This limits us from using
window sizes used in conventional speech processing ( e.g.,
20 -40 ms [17]). Speech separation methods with algorithmic
latencies below 10 ms have been reported, e.g., using non-
negative matrix factorization [18], and DNNs [19, 20, 21].

In this paper, we investigate a low-latency adaption of the
deep clustering framework first introduced in [7]. The origi-
nal framework involves using a BLSTM network to estimate
high-dimensional embeddings for each time-frequency bin in
the mixture STFT which is then partitioned into clusters cor-
responding to the constituent speakers. Our focus in this work
is three-fold: a) investigation of separation performance with
LSTM instead of BLSTM to allow online processing, b) in-
vestigation of separation performance for short synthesis win-
dow (8 ms in this work) instead of longer 32 ms used in orig-
inal work, and c) investigation of using a certain duration in
the beginning of acoustic mixture to estimate the cluster cen-
tres corresponding to the constituent sources. We refer to this
time duration as the buffer. The estimation of cluster centres
here thus serves as an initialization phase and the method is
capable of doing online separation after the buffer duration.
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We evaluate separately the effect of the above three mod-
ifications. We observe one dB lower SDR while using an
LSTM instead of the BLSTM network as was used in the
original work [7]. The separation performance degrades by
around 2.1 dB while shortening the window length from 32
ms to 8 ms as compared to the baseline. Moreover, we show
that it is possible to estimate reasonably well cluster centres
using just the beginning of the signal yielding good separation
for the rest of the signal.

The paper is structured as follows: Section 2 describes the
baseline deep clustering approach proposed in [7]. Section
3 describes its low-latency adaptation. Section 4 describes
the evaluation procedure, experimental set up, and obtained
results. Finally, Section 5 concludes the paper.

2. DEEP CLUSTERING FOR SPEAKER
SEPARATION

In this section, we summarize the deep clustering method pro-
posed in [7, 8]. Deep clustering can be thought of as a com-
bination of supervised learning and unsupervised learning.
Unlike the traditional DNN-based speech separation methods
that predict a time-frequency mask or separate speech spec-
trum for the mixture input in a supervised manner [2, 3], it
generates an embedding vector for each time-frequency bin
and then uses the unsupervised learning approach such as k-
means to cluster the embedding vectors in order to get the
time-frequency masks.

Given a mixture audio signal in the time domain x(n),
firstly, features are extracted by calculating its log magnitude
short-time Fourier transform (STFT). The features are then
inputted to a neural network that will output an embedding
vector for each of the time-frequency points. In the original
deep clustering framework, BLSTM network was used [7],
and therefore we choose it as the baseline here. The output
of the neural networks is an embedding matrix V∈RTF×D,
where T denotes the number of frames, F the number of fre-
quency bins, and D the embedding dimension. Finally, k-
means clustering is employed to partition the embedding vec-
tors into clusters corresponding to different constituent speak-
ers. Binary time-frequency masks for each speaker is then
obtained using these cluster assignments by assigning 1 to all
the time-frequency bins within the cluster of the speaker, and
0 to the rest of the bins.

The neural network is trained to minimize the difference
between the estimated affinity matrix VVT derived from the
embeddings V predicted by the neural network and the target
affinity matrix YYT , where Y ∈ RTF×C is the ideal binary
mask. C indicates the number of speakers in the mixture. The
training loss function L is computed as,

L =
∥∥∥VVT −YYT

∥∥∥
F

=
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F
− 2
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F
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Fig. 1. The block diagram of the proposed low-latency deep
clustering method.

where F denotes the Frobenius norm of the matrix. In or-
der to remove the contribution of noisy/silent regions in the
network training, a voice active detection (VAD) threshold
is employed. Only the embeddings corresponding to time-
frequency bins with magnitude greater than the VAD thresh-
old (-40 dB below the maximum amplitude as in [7]) con-
tribute to the above loss calculation.

It should be noted that at the test stage the k-means algo-
rithm is employed to cluster the embeddings using the entire
test signal, thus making the method unsuitable for low-latency
processing. In the test stage, the estimated binary masks are
applied to the complex spectrogram of the mixture hence mix-
ture phase is utilized. Inverse STFT and overlap-add process-
ing is applied to obtain separated signals in the time domain.

3. LOW-LATENCY DEEP CLUSTERING

In order to make the deep clustering based separation oper-
ate with low latency, there are three parts that need to be
adapted: a) The topology of the neural network is changed
from BLSTM as was used in [7] to LSTM in order to produce
embedding vectors in an online manner for each frame as they
are inputted to the network; b) In the baseline method [7], 32
ms synthesis window length is used. The resulting latency
may be prohibitive for certain applications, e.g., hearing aids
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[15] as was explained in the introduction. Hence we shorten
the window length to 8 ms; and; c) Instead of using the whole
signal, we propose using only a certain length in the begin-
ning of the mixture, which we refer as the buffer, to get the
cluster centres. These cluster centres can be then used to es-
timate the masks for the rest of the mixture. Please note that
since the first few seconds of the signal are used to estimate
the cluster centres, the method is not able to separate sources
during this initialization stage. However, after the buffer, the
rest of the signal will be processed in an online manner. The
process of the low-latency version of deep clustering method
is depicted in Fig. 1 with a buffer duration of 1.5 s.

4. EVALUATION

4.1. Acoustic material

The evaluation is done using synthetic two-speaker mixtures
generated from Wall Street Journal (WSJ0) corpus. The du-
ration of mixtures is on average around 6 s. The training data
set consists of 20,000 two-speaker mixtures created by ran-
domly selecting utterances from 101 different speakers from
WSJ0 si tr s that amounts to around 30 hours of training ma-
terial. Similarly, for the validation data set, we create 5000
two-speaker mixtures that last for around 8 hours having the
same speakers as in training data set. The test data is gen-
erated from WSJ0 si dt 05 and si et 05 and consists of 3000
mixtures and lasts around 5 hours having 18 different speak-
ers. The test data has different speakers from training data
and validation data for the purpose of evaluating the separa-
tion performance in open conditions as described in [7].

We downsample the speech samples from 16 kHz to 8
kHz for reducing the computational requirements and to make
the evaluation setup similar to [7]. As the proposed approach
(factor c) relies on both the speakers being active during the
buffer duration, for a fair investigation of the effect of buffer
duration and comparison of offline deep clustering to its on-
line counterpart, the same data should be used for evaluation.
Hence in the test set for (c) we firstly remove the silence from
the beginning of both speech signals and sum them to form
the mixture thus ensuring that both speakers are active during
the buffer duration ( ≥ 100 ms in this work, i.e., all mixtures
have both speakers active within at least 100 ms in the begin-
ning). The longer speech signal is trimmed to the length of the
shorter utterance before adding to form the mixture. It should
also be noted that such test mixtures have a larger degree of
overlapped speech and are thus harder to separate.

4.2. Metrics

We use BSS-EVAL toolbox [22] for evaluating the system
performance. It consists of three metrics: signal-to-distortion-
ratio (SDR), signal-to-interference-ratio (SIR), and signal-to-

artifacts-ratio (SAR). The average SDR of test mixtures with-
out any separation is 0.1 dB.

4.3. Experiment setup

In order to analyze the effect of the following different fac-
tors, namely, a) BLSTM vs LSTM networks, b) 32 ms vs 8
ms window length, and, c) different buffer duration for low-
latency process, we conduct separate experiment for each of
these.

The baseline framework is taken to be the one used in [7].
It consists of a BLSTM network with four layers and 600 units
in each layer followed by a time-distributed dense layer. The
number of units in the time distributed dense layer is the prod-
uct of the number of embedding dimensions and the number
of effective FFT points. Hyperbolic tangent (tanh) is used as
the activation function in this layer. After the dense layer, L2
normalization is used to bound the embedding vectors to unit
norm. The same parameters have been used for the LSTM
network in order to analyze the effect of factor a). To compare
the effect of different window length, the same LSTM net-
work and a shorter window length of 8 ms for STFT feature
extraction are used. For a fair comparison with the baseline,
the network must be trained with the sequences having the
same time context. The baseline BLSTM was trained on 100
frame sequences (800 ms). Here we reduce the hop length
to 4 ms hence the sequence length is increased to 200 (800
ms). We first train the network for 100 frame sequences and
then after convergence continue training with 200 frame se-
quences, known as curriculum learning used in [8] and first
introduced in [23]. The idea is to pre-train a network on an
easier task first improves learning and generalization. Finally,
c) is studied by varying the buffer duration using the network
with the same LSTM network (four layers and 600 units in
each layer) with 8 ms window length. The same FFT size
(256) is used for both offline (32 and 8 ms frame length) and
online deep clustering (8 ms frame length) frameworks, i.e.,

Table 1. Feature and system parameters for offline and online
deep clustering experiments.

offline DC low-latency DC

Window length 32 ms 8 ms
Hop length 8 ms 4 ms
Sequence length 100 200
Network BLSTM LSTM

Window Hanning
Sampling frequency 8 kHz
FFT size 256
Number of layers 4
Number of LSTM units 600
Embedding dimension 40
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Fig. 2. Evaluation metrics (dB) for LSTM network with dif-
ferent buffer durations (factor c in the experimental set up.)

zero padding is used wherever required.
During the training process, the ’Adam’ optimizer is uti-

lized [24]. The Keras [25] and Tensorflow [26] libraries are
used for network training, and Librosa library [27] is used
for feature extraction and signal reconstruction in this paper.
In order to reduce overfitting, early stopping method is used
[28] by monitoring the loss on validation data and stopping
the training when no decrease in it is observed for 30 epochs.
The embedding dimension is set to 40 and the VAD threshold
is 40 dB, similar to the original study [7]. The detailed de-
scription of the parameters for the network can be found from
Table 1.

It should be noted that Fig. 1 depicts the real world use
case where a buffer duration in the beginning of an utterance
is used for estimating clusters and the separation starts after
that. This however makes acoustic material used for evalu-
ation dependent upon the buffer duration if the same utter-
ance is used for both cluster estimation and evaluation. To
deal with this mismatch, for each test utterance, we randomly
select another utterance (cluster utterance) belonging to the
same speaker pair and use it to estimate clusters. Different
buffer lengths can thus be sampled from the beginning of this
cluster utterance for the same test utterance in order to study
the effect of factor c. Moreover, the VAD threshold is used
during cluster estimation to exclude the effect of noisy time-
frequency bins.

4.4. Results and discussion

We calculate the mean of evaluation metrics, SDR, SIR, and
SAR over all the test mixtures. All the test mixtures are
formed such that both constituent speech signals are active
within the lowest buffer duration used in experiments (100
ms here). Hence they have a higher overlap between the con-
stituent speech. As described in the previous section, we

Table 2. Evaluation metrics (dB) of different variants of the
offline method and the online method with 1.5s buffer. Here
online refers to factor c in the experimental setup

Window length SDR SIR SAR

BLSTM 32 ms 7.9 15.6 9.2
LSTM 32 ms 6.9 14.5 8.4
LSTM 8 ms 5.8 13.6 7.2

Online LSTM 8 ms 5.1 12.6 6.7
(1.5s buffer)

adopt the strategy of estimating clusters on different utter-
ances than test utterances. Hence the same dataset can be
used for evaluation for both offline and online deep cluster-
ing methods. The results with baseline offline case is shown
in Table 2. Similarly, the evaluation metrics corresponding
to the LSTM network with 32 and 8 ms window lengths is
shown as well. The online LSTM in Table 2 refers to low-
latency LSTM with 8 ms window length and 1.5 s buffer
time. It can be observed that the separation performance is
one dB lower in terms of SDR while replacing BLSTM to
LSTM while keeping the same window length. Moreover,
by decreasing the window length to 8 ms, SDR degrades by
about 2.1 dB as compared to the baseline.

The effect of varying buffer duration on performance met-
rics is shown in Fig. 2. Two interesting observations can be
made from it: firstly, even with a short buffer duration, e.g.,
100 ms, relatively reasonable separation performance can
still be achieved (4.5 dB); and secondly after a certain buffer
length more information does not lead to a drastic improve-
ment in separation performance. This means a small buffer
duration, even as low as 300 ms, can yield good separation
provided both the constituent speakers are active during it.

5. CONCLUSION

The paper proposes a low-latency adaptation of deep clus-
tering based speech separation. In particular, a buffer signal
duration in the beginning of audio mixture is used for esti-
mating cluster centres corresponding to the speakers present
in the mixture. This duration serves as an ’initialization’ pe-
riod after which the rest of the speech mixture is processed
in online manner. Moreover, separation performance of the
method using an LSTM network and a short synthesis win-
dow length of 8 ms, as required by real-time operation, has
been studied. A degradation in SDR of about one dB is ob-
served for the former and 2.1 dB for the latter as compared to
the baseline. Finally, we investigate how the buffer duration
affects the separation result and observe that even very short
buffer duration, e.g. 300 ms, is sufficient to estimate clusters
for reasonable separation.
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