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ABSTRACT
This paper presents a novel phase reconstruction method (only from
a given amplitude spectrogram) by combining a signal-processing-
based approach and a deep neural network (DNN). To retrieve a
time-domain signal from its amplitude spectrogram, the correspond-
ing phase is required. One of the popular phase reconstruction meth-
ods is the Griffin–Lim algorithm (GLA), which is based on the re-
dundancy of the short-time Fourier transform. However, GLA often
involves many iterations and produces low-quality signals owing to
the lack of prior knowledge of the target signal. In order to address
these issues, in this study, we propose an architecture which stacks a
sub-block including two GLA-inspired fixed layers and a DNN. The
number of stacked sub-blocks is adjustable, and we can trade the
performance and computational load based on requirements of ap-
plications. The effectiveness of the proposed method is investigated
by reconstructing phases from amplitude spectrograms of speeches.

Index Terms— Phase reconstruction, spectrogram consistency,
deep neural network, residual learning.

1. INTRODUCTION

In recent years, phase reconstruction has gained much attention in
the signal processing community [1, 2]. Many ordinary speech pro-
cessing methods defined in the time-frequency domain have consid-
ered only amplitude spectrograms and utilized the phase of the ob-
served signal without modifying it. Meanwhile, recent studies have
proven that phase reconstruction can improve the quality of the re-
constructed signal [3], and thus several methods have been proposed
for that [4–8]. Phase reconstruction solely from an amplitude spec-
trogram has also received increasing attention along the development
of the short-time Fourier transform (STFT)-based speech synthe-
sis [9, 10] which generates an amplitude spectrogram and requires
phase reconstruction for generating a time-domain signal. This pa-
per focuses on such a situation where only an amplitude spectrogram
is available for reconstructing the phase.

When only an amplitude spectrogram is available and no explicit
information is given for the phase, such as in STFT-based speech
synthesis, the Griffin–Lim algorithm (GLA) is one of the popular
methods for phase reconstruction [11]. GLA promotes the consis-
tency of a spectrogram by iterating two projections (see Section 2.1),
where a spectrogram is said to be consistent when its inter-bin de-
pendency owing to the redundancy of STFT is retained [12]. GLA
is based only on the consistency and does not take any prior knowl-
edge about the target signal into account. Consequently, GLA often
requires many iterations and results in low-quality signals.

For incorporating prior knowledge of target signals into phase
reconstruction, deep neural networks (DNNs) have been applied re-
cently [13–16]. There exist a number of approaches to reconstruct
phase using DNNs. One approach is to treat it as a classification
problem by discretizing the candidates of phase [13, 14], which is
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Fig. 1. A block diagram of the proposed architecture for reconstruct-
ing phase from a given amplitude spectrogram (top), which stacks a
common sub-block (bottom). The sub-block consists of two fixed
GLA-inspired layers (red, blue) and a trainable DNN (green).

effectively utilized in speech separation. Other approaches handle
phase as a continuous periodic variable [15] or treat complex-valued
spectrogram [16]. While these DNN-based phase reconstruction
methods have obtained successful results, the number of layers is
determined when they are trained. That is, their performance and
computational load are fixed at the training. It should be beneficial if
one can easily trade the performance and computational load at the
time of inference depending on requirements of applications.

In this study, we propose a phase reconstruction method which
incorporates a DNN into GLA. The proposed method stacks a com-
mon sub-block motivated by the iterative procedure of GLA, which
constructs a deep architecture, named deep Griffin–Lim iteration
(DeGLI), as illustrated in Fig. 1. In the proposed architecture, the
number of total layers corresponds to the number of stacking, and
its depth can be adjusted afterward based on the allowable computa-
tional load in applications. Its training procedure is also proposed to
effectively train the DNN within the sub-block. Our main contribu-
tions are twofold: (1) proposing a deep architecture whose sub-block
contains the fixed GLA-inspired layers which enable reduction of
the amount of trainable parameters (Section 3.1); and (2) proposing
its training procedure which instructs the sub-block to be a denoiser,
instead of requiring it to reconstruct the phase (Section 3.2). Thanks
to this training procedure, the difficulty of training a DNN in phase
reconstruction arisen from the periodic nature of phase is circum-
vented. To evaluate the effectiveness of the proposed method, the
quality of the reconstructed signal by GLA and the proposed method
is compared.

2. RELATED WORKS

2.1. Griffin–Lim Algorithm (GLA)

GLA is a popular phase recovery algorithm based on the consistency
of a spectrogram [11]. This algorithm expects to recover a complex-
valued spectrogram, which is consistent and maintains the given am-
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plitude A, by the following alternative projection procedure:

X[m+1] = PC
(
PA(X[m])

)
, (1)

where X is a complex-valued spectrogram updated through the iter-
ation, PS is the metric projection onto a set S, and m is the iteration
index. Here, C is the set of consistent spectrograms, and A is the set
of spectrograms whose amplitude is the same as the given one. The
metric projections onto these sets C and A are given by,

PC(X) = GG†X, (2)

PA(X) = A⊙X⊘ |X|, (3)

where G represents STFT, G† is the pseudo inverse of STFT (iSTFT),
⊙ and ⊘ are element-wise multiplication and division, respectively,
and division by zero is replaced by zero. GLA is obtained as an
algorithm for the following optimization problem [12]:

min
X

∥X− PC(X)∥2Fro s.t. X ∈ A, (4)

where ∥ · ∥Fro is the Frobenius norm. This equation minimizes the
energy of the inconsistent components under the constraint on am-
plitude which must be equal to the given one. Although GLA has
been widely utilized because of its simplicity, GLA often involves
many iterations until it converges to a certain spectrogram and re-
sults in low reconstruction quality. This is because the cost function
in Eq. (4) only requires the consistency, and the characteristics of
the target signal are not taken into account. Introducing prior knowl-
edge of the target signal into the algorithm can improve the quality
of reconstructed signals as discussed in [7, 17].

2.2. DNN-based phase reconstruction with fixed STFT layers
Recently, DNNs including fixed STFT (and iSTFT) layers were con-
sidered for treating phase information within the networks. A gen-
erative adversarial network (GAN)-based approach to reconstruct a
complex-valued spectrogram solely from a given amplitude spectro-
gram was presented in [16]. The output of the generator (a complex-
valued spectrogram) is converted back to the time domain by iSTFT
layer and inputted to the discriminator, where this iSTFT layer is es-
sential for its training as discussed in [16]. As another example, a
DNN for speech separation [18] employed the multiple input spec-
trogram inverse (MISI) layer which consists of the pair of STFT and
iSTFT as in GLA. The MISI layer is applied to the output of the
DNN for speech separation to improve its performance by consider-
ing the effect of the phase reconstruction together with the separa-
tion. In addition, in [19], the time-frequency representation was also
trained with the DNN for speech separation. The success of these
DNNs indicates that considering STFT (and iSTFT) together with a
DNN is important for treating phase.

The common strategy for these DNNs is that fixed STFT-related
layers are placed after a rich DNN. Their loss functions are evalu-
ated after going through such STFT-related layers, and their effect
is propagated for updating the parameters of DNNs. Based on this
observation, loss functions tied with STFT (and iSTFT) seem impor-
tant in phase reconstruction because such loss functions are related to
the concept of the consistency. At the same time, fixed STFT-related
layers have several benefits for training. Since they do not contain
trainable parameters, adding STFT-related layers does not increase
the number of trainable parameters while they capture the structure
of complex-valued spectrograms efficiently. Therefore, use of the
STFT-related layers within DNNs may be recommended for treating
phase information. However, there are little research on such DNN
containing STFT within the network.

3. PROPOSED DEEP ARCHITECTURE

Based on the above discussions, we propose an architecture for phase
reconstruction, named deep Griffin–Lim iteration (DeGLI), which is
a unification of GLA and a DNN. As illustrated in Fig. 1, the pro-
posed architecture consists of a common sub-block, and it is stacked
to form the whole deep architecture based on the iterative procedure
of GLA. The architecture of DeGLI is introduced in Section 3.1,
while its training procedure is described in Section 3.2.

3.1. Deep Griffin–Lim Iteration (DeGLI)
One interesting trend of research in deep learning is to interpret an
optimization algorithm as a recurrent neural network (RNN) and
construct a DNN architecture following that [20–22]. The DNN
introduced in the previous section [18, 19] was also obtained by a
similar approach called deep unfolding [23, 24]. In this context, the
iterative procedure of GLA in Eq. (1) is interpreted as an RNN which
stacks the fixed linear layer PC and target-dependent nonlinear layer
PA. By looking close at Eq. (1), it can be seen that the complex-
valued spectrogram at mth iteration X[m] is inputted into the non-
linear layer PA, and then its output passes through the fixed linear
layer PC consisting of STFT G and iSTFT G† as in Eq. (2). That
is, GLA is a parameter-fixed RNN consisting of STFT and iSTFT
layers within the network. Inspired from the above observations, the
proposed deep architecture for phase reconstruction, or DeGLI, is
defined through a sub-block based on GLA.

Let us consider the intermediate representation of GLA,

Y[m] = PA(X[m]), (5)

Z[m] = PC(Y
[m]), (6)

where the combination of these equations recovers Eq. (1). Since
Y[m] is the amplitude-replaced version of X[m], their difference in-
dicates the amount of mismatch between the amplitude of current
spectrogram |X[m]| and the desired amplitude A. Similarly, since
Z[m] is the closest consistent spectrogram to Y[m] (in the Euclidean
sense), the difference between them indicates the amount of incon-
sistent components [12]. Such differences should be quite informa-
tive for phase reconstruction because the aim of GLA is to reduce
them as much as possible. However, such intermediate information
is not considered in the original GLA in Eq. (1).

To effectively use those intermediate information in a learning
scheme, we propose DeGLI as the following architecture:

X[m+1] = B(X[m]), (7)

= Z[m] − F (X[m],Y[m],Z[m]), (8)

where B is the proposed DeGLI-block inspired by GLA as in Fig. 1,
and F is a DNN. The whole architecture can also be viewed as an
RNN or a feed-forward network in which the weights are shared.
By stacking M DeGLI-blocks (which is equivalent to iterate Eq. (7)
M times), the whole DeGLI architecture becomes M -times deeper
without increasing the number of trainable parameters. That is, the
total depth of the DeGLI architecture can be adjusted afterward,
which enables one to easily trade its performance and computational
load for adapting the allowable computational time of various appli-
cations. Note that, as a specific case, DeGLI reduces to the ordi-
nary GLA when F (X[m],Y[m],Z[m]) = O, where O is the zero
matrix. A variant of GLA in [25] can also be obtained by setting
F (X[m],Y[m],Z[m]) = γ(X[m] − Z[m]) (0 < γ < 1), which in-
dicates that DeGLI is a general architecture including several GLA-
type algorithms as spacial cases.
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Fig. 2. The block diagram for training the sub-block.

One of the key points of the DeGLI architecture is that Z[m]

(= PC(PA(X[m]))) is the output of GLA-inspired layers at mth
iteration, and the proposed DeGLI-block B is defined as the sub-
traction of the DNN output F (X[m],Y[m],Z[m]) from the output
of GLA-inspired layers Z[m]. Defining the DeGLI-block in this way
is based on two reasons: (1) differences between each intermediate
representation indicates the residual to the desired ones as discussed
in the above paragraph; and (2) it is known that treating a residual is
easier than directly estimating the target according to the literature
on the residual learning [26, 27].

3.2. Training procedure for DeGLI-block

Since the proposed DeGLI architecture can be interpreted as a large
DNN, a simple strategy for training the DeGLI-block is directly min-
imizing the loss of phase reconstruction measured by the output:

min
θ

D
(
Gθ(A), PC(Gθ(A))

)
, (9)

where G (·) = PA(B(· · ·B(B(·)))) represents the whole DeGLI
architecture, θ represents all trainable parameters in G (i.e., the pa-
rameters in F ), D(·, ·) is a measure of mismatch such as a norm
of difference, and the minimization is considered for all A. This
problem is related to the optimization problem for GLA in Eq. (4)
when D is the squared Frobenius norm of the difference of the vari-
ables (note that, since PA is applied at the last of G , the constraint
in Eq. (4) is always satisfied). Although the above training strat-
egy is straightforward, the number of the blocks should be defined
in advance for applying it. In addition, it did not work well in our
preliminary experiments.

In order to tackle this issue, we train the DeGLI-block B to be a
denoiser by the training procedure illustrated in Fig. 2. Let X⋆ be a
complex-valued spectrogram of a target signal, and X̃ = X⋆+N be
its noisy counterpart degraded by complex-valued noise N. Then,
the DeGLI-block B is trained so that B(X̃) ≈ X⋆, i.e.,

B(X̃) = Z̃− F (X̃, Ỹ, Z̃) ≈ X⋆, (10)

based on the definition in Eq. (8). Since Z̃ is obtained only from the
fixed layers PA and PC , the optimization problem for training the
DNN F is given by

min
θ

D
(
Z̃−X⋆,Fθ(X̃, Ỹ, Z̃)

)
. (11)

In such denoising, the DNN F estimates the residual components
Z̃ − X⋆ which should not be contained in the GLA output Z̃ =

PC(PA(X̃)). To be specific, the DNN takes the mismatch to the
consistency and amplitude into account by inputting Ỹ and Z̃, and
it implicitly eliminates the latent target signal (such as clean speech)
through hidden layers in F . This training strategy is closely related
to the residual learning strategy. It has been shown that a denoising
sub-block with the residual learning strategy is robust to the type and
level of noise, and it can be applied to a variety of tasks as discussed
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Fig. 3. The illustration of the DNN used in the experiment. It maps
real and imaginary parts of three complex-valued spectrograms (X,
Y, and Z) to those of the residual. Here, “Conv” indicates a con-
volutional layer with the zero padding for keeping the input size,
where k, s, and c are the kernel size, stride size, and the number of
channels, respectively. “GLU” represents the gated linear unit.

in [27, 28]. The idea of applying a denoising DNN for general tasks
can also be found in [29, 30].

Note that, after passing through the fixed nonlinear layer PA, the
amplitude of the complex-valued spectrogram is always replaced by
the desired one. That is, the difference between Ỹ and the target X⋆

is only phase, and thus denoising of Ỹ (= PA(X̃)) corresponds to
phase reconstruction. It can be expected that the denoising sub-block
including GLA-inspired layers also works well in phase reconstruc-
tion. In any case, the trained DNN F (and thus B) only affects the
phase of the final output because the amplitude is always set to the
given one by PA after the last DeGLI block.

4. EXPERIMENT

In order to validate the effectiveness of DeGLI, the quality of re-
constructed speeches was evaluated by objective measures. The pro-
posed method was compared with GLA as a baseline method.

4.1. Experimental settings

A DNN F used in the DeGLI-block B for the experiment is illus-
trated in Fig. 3. The 2D Convolutional layers (Conv) and the gated
linear units (GLU) [31] are stacked with the skip connections. In
the Conv layers, the complex-valued spectrograms are treated as im-
ages, where the real and imaginary parts are concatenated along the
channel direction. Note that the input of the DNN is three complex-
valued spectrograms as in Figs. 1 and 2, which results in six channels
as each of the three consists of the real and imaginary parts.

As the training dataset for denoising, the Wall Street Journal
(WSJ-0) corpus recorded at the sampling rate of 16 kHz was uti-
lized. 14 250 speech files were randomly selected from the database
to form a training set, and the rest of the data was used as a valida-
tion set. During the mini-batch training, the utterances were divided
into about 2-second-long segments (32 768 samples), and the Adam
optimizer was utilized as the optimization solver. The network was
trained for 50 epochs with a learning rate control, where the learning
rate was decayed by multiplying 10−0.5 if the loss function on the
validation set did not decrease for 2 consecutive epochs, and the ini-
tial learning rate was set to 10−3. As the noise utilized for training
in the time-frequency domain (described in Section 3.2), the com-
plex Gaussian noise was added so that the signal-to-noise ratio was
randomly selected from −6 to 0 dB, and the measure of mismatch D
as the loss function in Eq. (11) was set to the ℓ1-norm of difference.
STFT was implemented with the Hann window, whose duration was
64 ms, with 32 ms shifting. As the test dataset, randomly selected
500 utterances from the TIMIT dataset were utilized for obtaining
amplitude spectrograms for phase reconstruction, where the initial
phases were set to zero in the time-frequency domain (i.e., the am-
plitude spectrogram was directly inputted as the initial value).
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Fig. 4. An example of the spectrograms within the proposed DeGLI-
block. “GLA” represents the output of the GLA-inspired layers
Z = PC(PA(X)), and “Original” is the clean speech signal X⋆

to be recovered. The difference between them Z − X⋆ is shown as
“Residual”, while its estimation F (X,Y,Z) is denoted by “DNN
output”. The DNN was able to accurately estimate the Residual.

4.2. Experimental results

An example of the results of the residual learning is shown in Fig. 4
for illustrating how the DNN in the proposed DeGLI-block works.
As shown in the figure, the DNN appropriately estimated the resid-
ual which is the difference between the output of the current GLA-
inspired layers and the target spectrogram. Such estimated resid-
ual is subtracted so that the difference to the ideal spectrogram is
reduced. We expect that the estimation by the DNN is reasonably
accurate to improve the output of the DeGLI-block.

The performance of phase reconstruction was evaluated by STOI
[32] and PESQ [33]. The score per iteration averaged among the test
set is shown in the upper row of Fig. 5. Both STOI and PESQ of
the proposed method were always higher than those of GLA at each
iteration, and it improved the performance as the number of iteration
increased. Since the iteration corresponds to the depth of the whole
architecture of DeGLI, this result indicates that one can iterate the
DeGLI-block until the quality of the reconstructed signal become
satisfactory. Namely, one can eliminate unnecessary computation,
or decide the depth based on the available computational resource at
that time. We stress that this unique feature of the proposed method
cannot be achieved by a single rich DNN directly mapping an in-
putted amplitude spectrogram into the final reconstructed signal.

Since the computational time per iteration is different between
GLA and the proposed DeGLI-block, the performance was also in-
vestigated in terms of computational time for fair comparison. In
this experiment, “Intel Core i9-7980XE (2.60 GHz)” and “NVIDIA
GeForce GTX 1080 Ti” were employed for the CPU and GPU, re-
spectively. For both methods, STFT and iSTFT were implemented
by TensorFlow. The scores per computational time are illustrated
in the bottom row of Fig. 5. Since the computational time per iter-
ation of the proposed method was about 2.4 and 9.6 times slower
than GLA by using GPU and CPU, respectively, the difference of
the scores between the methods is closer than in the top row. Never-
theless, the proposed method notably outperformed GLA especially
for PESQ. To see the scores at some specific iterations, box plots
of the scores are also shown in Fig. 6. The results were obtained
from the 100th iteration for GLA and the 10th iteration for the pro-
posed method because the computational times of these methods are
roughly the same at those iteration numbers. It can be seen that the
tendencies of the scores are the same as the averaged values in Fig. 5,
and the effectiveness of the proposed DeGLI architecture was con-
firmed by a paired one-side t-test (p<0.01).

In summary, it was confirmed that the proposed DeGLI archi-
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Fig. 5. Average scores of STOI and PESQ per iteration (top) and per
computational time (bottom) for GLA (blue, circles) and the pro-
posed method (red, cross marks). The yellow dashed line indicates
that the real time factor is 1. For measuring the computational time,
both methods were implemented by using CPU and GPU.
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Fig. 6. Box plots of the scores of STOI and PESQ, where the results
of GLA were evaluated at the 100th iteration, while those of DeGLI
were obtained from the output of the 10th stacks. The red lines are
the median, and the boxes indicates the first and third quartiles.

tecture can be trained so that utilizing the common block for ev-
ery iteration improves the performance, which should be because of
training as a denoiser and the residual learning strategy. Note that
the trainable DNN used in this experiment was merely an example,
and it must be possible to improve the performance by considering a
DNN more suitable for phase reconstruction.

5. CONCLUSION

In this study, we proposed a deep architecture, named DeGLI, which
combines a DNN with the iterative procedure of GLA. The key idea
was to stack the same sub-block, so that the depth of whole architec-
ture can be adjusted without increasing the number of trainable pa-
rameters. This feature enables one to trade the quality of the recon-
structed signal and computational load depending on applications.
The residual learning strategy was applied to train the sub-block as
a denoiser, where the DNN removes the undesired components in-
troduced by GLA. Experimental results confirmed that a denoising
sub-block is applicable to phase reconstruction, which indicates that
the task of training can be different from the phase reconstruction
which is not an easy task for a DNN owing to the periodic nature
of phase. Investigation of a DNN suitable for the proposed DeGLI
remains as a future work.
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