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ABSTRACT
The goal of Acoustic Scene Classification (ASC) is to recog-
nise the environment in which an audio waveform has been
recorded. Recently, deep neural networks have been applied to
ASC and have achieved state-of-the-art performance. However,
few works have investigated how to visualise and understand
what a neural network has learnt from acoustic scenes. Previ-
ous work applied local pooling after each convolutional layer,
therefore reduced the size of the feature maps. In this paper,
we suggest that local pooling is not necessary, but the size of
the receptive field is important. We apply atrous Convolutional
Neural Networks (CNNs) with global attention pooling as the
classification model. The internal feature maps of the atten-
tion model can be visualised and explained. On the Detection
and Classification of Acoustic Scenes and Events (DCASE)
2018 dataset, our proposed method achieves an accuracy of
72.7 %, significantly outperforming the CNNs without dilation
at 60.4 %. Furthermore, our results demonstrate that the learnt
feature maps contain rich information on acoustic scenes in
the time-frequency domain.

Index Terms— deep neural networks, atrous convolu-
tional neural networks, attention pooling, acoustic scene clas-
sification

1. INTRODUCTION

To recognise acoustic environments automatically, Acoustic
Scene Classification (ASC) [1] has been a main objective of
research in computer audition [2, 3]. It aims at classifying
acoustic scenes through computational algorithms including
signal processing and machine learning. A variety of appli-
cations could benefit from ASC, including mobile robots [4],
context-aware computing [5], and wearable devices [6].

Previous methods applied Support Vector Machines
(SVMs) [7] and Hidden Markov Machines (HMMs) [8] to
ASC. Recently, neural network based methods including
fully connected neural networks [9], Recurrent Neural Net-
works (RNNs) [10, 11], and Convolutional Neural Networks
(CNNs) [11], have achieved the state-of-the-art performance

in ASC. Neural networks are effective at extracting high-level
features to classify unseen data. However, previous work for
audio classification [12] did not visualise and analyse the in-
ternal layers of CNNs.

This paper aims to visualise high-level representations in
CNNs. For example, while spectrogram images of audio wave-
forms are the input, the time-frequency units in a feature map
can be localised according to their contribution. This idea of lo-
calisation is inspired from image-based object localisation [13].
Our work can help better explain which time-frequency com-
ponents contribute to ASC and can be further used for sound
segmentation or separation [14].

There are two difficulties in visualising high-level represen-
tations in CNNs. Firstly, the learnt representations depend on
global pooling after the last convolutional layer. Global max
or average pooling result in accurate classification, but tend to
under- or overestimate the units in feature maps [14]. Global
attention pooling has been proposed to adaptively attend to
the units [15, 16]. However, in [16], the learnt low resolution
representations lost the time-frequency details due to stride
convolution, which is similar with local pooling layers.

In this paper, we discover that local pooling is not neces-
sary, but the size of the receptive field is important for ASC.
We propose to use atrous CNNs [17] with a large receptive
field instead of local pooling to fix the size of feature maps.
Then, a global attention pooling layer is applied on the feature
maps to learn the time-frequency units’ contributions.

2. RELATED WORK

Our proposed attention-based atrous CNNs build on previous
work using attention-based CNNs [16]. In that work, we ex-
tracted attention matrices with a size of 4 × 20 and applied
a basic analysis. However, the resulting low resolution fea-
ture maps could not describe the time-frequency properties of
acoustic scenes in detail.

To fix the size of the feature maps at each convolutional
layer, the simplest solution is a vanilla CNN model without
local pooling layers. However, this increases both time and
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space complexities and results in sub-optimisation. Encoder-
decoder CNNs were proposed in [18], employing a decoder to
up-sample the feature maps using transferred pool indices from
the encoder. Similarly, in [19], Fully Convolutional Networks
(FCNs) used deconvolutional layers to up-sample the feature
maps. However, both encoder-decoder CNNs and FCNs are
comprised of pooling and up-sampling layers, therefore require
strongly labelled data for pixel-wise classification. Datasets in
ASC can be considered weakly labelled as only one acoustic
class is annotated for each audio wave. In a separate study [17],
atrous CNNs were used with a dilated receptive field instead
of pooling and up-sampling, obtaining state-of-art results for
the task of semantic image segmentation. Motivated by this
success, we herein use atrous CNNs, with a weakly labelled
ASC dataset and combined with an attention model to improve
the visualisation of representations.

3. METHODOLOGY

3.1. Baseline CNNs

CNNs have been successfully used for tasks of audio clas-
sification [12, 20, 21]. In our work, log mel spectrogram
images [22] are extracted from audio waveforms as the input
of CNNs. The baseline CNN model consists of four convo-
lutional layers. Low-level convolutional layers are designed
to extract low-level features; high-level convolutional layers
are good at learning more abstract representations such as
acoustic sounds patterns [23]. A local max pooling operation
with a kernel size of 2× 2 is applied after each convolutional
layer to extract the shift-invariant features [24] ( Fig. 1 (a)).
Then, a global pooling layer [12] is applied to the final feature
maps. Finally, a softmax non-linearity is utilised to predict the
probabilities of scene classes.

3.2. Atrous CNNs

However, a local max pooling operation in baseline CNNs
results in feature maps with a small size (Fig. 1 (a)). Therefore,
the feature maps cannot be pixel-wisely mapped to spectro-
gram images. The simplest solution is to remove all local max
pooling layers so that the size of the feature maps is fixed
(Fig. 1 (b)). In the experiment section, we will show that the
CNNs in Fig. 1 (b) underperform the baseline CNNs.

Interestingly, we discover that this underperformance is
not caused by removing local max pooling layers. Instead,
it arises from the reduced size of receptive field relative to
the input of CNNs. The size of a receptive field is number of
frequency bins × number of time frames during the convolution
operation. Without local max pooling, the size of a receptive
field increases linearly with the number of layers; with local
max pooling, it increases exponentially with the number of
layers.

We introduce atrous CNNs [25] to improve the perfor-
mance without local max pooling. Atrous CNNs have been
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Fig. 1. Three CNNs: (a) Baseline CNNs, (b) CNNs without
local max pooling layers, (c) Atrous CNNs.

applied to high resolution image segmentation [17] and audio
generation [25] by fixing the size of feature maps. Atrous
CNNs use dilated convolutional kernels (Fig. 1 (c)); therefore,
the size of the receptive field increases exponentially with the
number of layers. The dilated convolutional kernel is a sparse
kernel so that the number of parameters does not increase
compared to the baseline CNNs.

3.3. Pooling Mechanism

Each feature map at the final convolutional layer has a size of
C × F × T , where C, F , and T denote the number of chan-
nels, number of frequency bins, and number of time frames,
respectively. Global pooling includes max [12], average [26],
and attention pooling [16]. Then, a fully connected layer is
applied to the output of global pooling to predict the proba-
bility of each class. Global max or average pooling has the
drawback of under- or overestimating the units in feature maps.
On the other hand, attention pooling can adaptively learn the
contributions of the time-frequency units. Attention pooling
consists of an attention and a classification branch,

Pft = Aft/

F∑
f=1

T∑
t=1

Aft, (1)

Y =

F∑
f=1

T∑
t=1

Pft · Cft, (2)

where A, P , and C each are the attention, probability, and clas-
sification matrices, and Y denotes the probabilities of classes.
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Fig. 2. The framework of our proposed attention-based atrous CNNs. The log mel spectrogram images with a size of 64× 320
are fed into CNNs with four dilated convolutional layers and an global attention pooling layer. The size of the feature maps
is represented as number of channels@frequency bins× time frames, and the size of holes within a kernel is adapted by
‘rate’.

In this paper, we additionally apply Region of Interest
(ROI) pooling [27] followed by global max pooling for an
experimental comparison. ROI pooling is achieved by a local
max pooling operating in a 16× 16 aliquoted feature map at
the final convolutional layer, to bring about the same effect of
the baseline CNNs using four 2× 2 max pooling layers.

4. EXPERIMENTAL RESULTS

4.1. Database

Our proposed approach is evaluated on the development set of
the ASC task of the Detection and Classification of Acoustic
Scenes and Events (DCASE) 2018 challenge [28]. The dataset
contains 10 acoustic scene classes and each audio recording
has a duration of 10 seconds. This ASC task consists of two
subtasks defined by matching or mismatching devices.

4.2. Setup

Log mel spectrogram images with a size of 64 mel frequency
bins and 320 time frames are extracted from the audio record-
ings with a Hamming window size of 2 048. The overlap is
set to satisfy that 320 time frames are sampled in single spec-
trogram. We train the models for 15 000 iteration steps with a
batch size of 16 to use single Graphics Processing Unit (GPU)
sufficiently. The ‘Adam’ optimiser [29] is employed with an
initial learning rate of 0.001. The learning rate is decreased
by a factor of 0.9 at every 200 iteration steps to stabilise the
training procedure. The set-up of the number of mel frequency
bins and initial learning rate are empirical.

4.3. Results and Discussion

We apply different global poolings on the baseline CNNs,
CNNs without local max pooling and atrous CNNs. Their
results are shown in Table 1. To reduce the risk of overfitting
caused by excessive parameters for 10-class classification, we
only experiment flattening on the baseline CNNs which have
feature maps with a small size of 4×20. In the baseline CNNs,

Table 1. Performance comparison of CNN topologies with
flattening and five global pooling models, including max, aver-
age (‘avg’), ROI, attention (‘att’), and the combination of ROI
and attention (‘roi+att’), evaluated on two subtasks (SUBA on
device A and SUBB on three devices A, B, and C) of accuracy.

Accuracy SUBA SUBB

Network Pooling A A B C

Baseline CNN flatten .609 .616 .494 .467
Baseline CNN max .686 .698 .572 .578
Baseline CNN avg .691 .658 .572 .578
Baseline CNN att .724 .726 .622 .561

CNN w/o local pool max .604 .619 .467 .522
CNN w/o local pool avg .628 .591 .544 .500
CNN w/o local pool roi .616 .617 .506 .439
CNN w/o local pool att .621 .596 .450 .433
CNN w/o local pool roi+att .681 .692 .561 .506

Atrous CNN max .688 .697 .600 .594
Atrous CNN avg .691 .672 .628 .600
Atrous CNN roi .652 .626 .483 .439
Atrous CNN att .727 .732 .644 .622
Atrous CNN roi+att .726 .722 .572 .567

the global max, average, and attention pooling outperform flat-
tening on both subtasks. For CNNs without local max pooling,
global max, average, ROI and attention pooling underperform
the baseline CNNs with global pooling. On the other hand,
our attention-based atrous CNNs achieves the highest accura-
cies of .727 on subtask A and .732, .644, .622 on subtask B.
Our model significantly outperforms the CNNs without local
max pooling, which achieves accuracies of .604 on subtask
A and .619, .467, .522 on subtask B (in a one-tailed z-test,
p < .001 for subtask A and subtask B (device A and B), and
p < .05 for device C in subtask B) . This result shows that the
size of receptive field has a greater effect on the performance
than a local max pooling operation. The atrous CNNs also fix
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Fig. 3. Heat maps with a size of 64× 320 are the visualisation of the attention matrix A in our attention-based atrous CNNs. The
horizontal and vertical axes each represent the time frames and frequency bins.

Table 2. The class-wise accuracies of the result of attention-
based atrous CNNs, which lead to the best results on two
subtasks (SUBA on device A; SUBB on devices A, B, and C).

Accuracy SUBA SUBB

Class A A B C

airport .596 .740 .611 .389
bus .777 .694 .667 .944
metro .640 .816 .944 .556
metro station .757 .822 .667 .667
park .843 .868 .778 .778
public square .593 .454 .500 .333
shopping mall .885 .681 .944 1.000
street pedestrian .522 .680 .444 .611
street traffic .894 .902 .833 .889
tram .762 .663 .056 .056

Average .727 .732 .644 .622

the resolution of the feature maps as 64× 320, which can be
visualised to observe the contributions of the time-frequency
components in a feature map.

The class-wise accuracies are shown in Table 2. Our pro-
posed model performs well for most classes on devices B and
C, except tram. We think this might be caused by a lot of noise
in recordings of tram by devices B and C.

4.4. Visualisation of the Feature Maps

The feature maps of the attention model are visualised in Fig. 3.
For different acoustic scene classes, the contributions of each
time-frequency unit are different. For example, airport, park,

and street traffic mainly contain stationary background noise
so that most time-frequency units have similar weight values.
The temporal continuity at several fixed mel-frequency bins
appears in the traffic environments, including bus, metro, and
tram. The feature maps of public square, shopping mall, and
street pedestrian indicate that some audio events like speech
occurred.

5. CONCLUSIONS

This paper proposed attention-based atrous convolutional neu-
ral networks (CNNs) to visualise and understand acoustic
scenes. Four dilated convolutional layers followed by a global
attention pooling model were used to fix the size of feature
maps for a visualisation. Our proposed model performed
significantly better than the CNNs without dilation on the
Detection and Classification of Acoustic Scenes and Events
(DCASE) 2018 challenge tasks. Moreover, the time-frequency
information in feature maps were visualised and analysed.

In future works, feature level attention models will be
investigated to reach a deeper visualisation of CNNs. Further,
CNNs followed by sequence to sequence learning methods
and 3D CNNs will be considered to investigate the temporal
information in acoustic scenes.
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