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ABSTRACT

Sound event detection is a challenging task, especially for scenes
with multiple simultaneous events. While event classification meth-
ods tend to be fairly accurate, event localization presents additional
challenges, especially when large amounts of labeled data are not
available. Task4 of the 2018 DCASE challenge presents an event de-
tection task that requires accuracy in both segmentation and recogni-
tion of events while providing only weakly labeled training data. Su-
pervised methods can produce accurate event labels but are limited in
event segmentation when training data lacks event timestamps. On
the other hand, unsupervised methods that model the acoustic prop-
erties of the audio can produce accurate event boundaries but are not
guided by the characteristics of event classes and sound categories.
We present a hybrid approach that combines an acoustic-driven event
boundary detection and a supervised label inference using a deep
neural network. This framework leverages benefits of both unsu-
pervised and supervised methodologies and takes advantage of large
amounts of unlabeled data, making it ideal for large-scale weakly la-
beled event detection. Compared to a baseline system, the proposed
approach delivers a 15% absolute improvement in F-score, demon-
strating the benefits of the hybrid bottom-up, top-down approach.

Index Terms— Sound event detection, unsupervised learning,
weakly labeled data, restricted Boltzmann machine, conditional re-
stricted Boltzmann machine

1. INTRODUCTION

Everyday soundscapes present a real challenge for audio technolo-
gies that seek to parse the changing nature of the scenes and detect
relevant events in the environment. With growing interest in smart
devices, smart assistants and interactive technologies, there are in-
creased efforts to develop robust ambient sound analysis systems
able to detect and track different sound sources and identify events
of interest.

Parsing a scene to identify important events is a nontrivial task.
Even humans exhibit a notable degree of variability in detecting oc-
currences of salient events when presented with realistic busy scenes
[1]. Machine audition has tackled the problem of sound event de-
tection by leveraging labeled data that allow machine learning al-
gorithms to ‘learn’ characteristics of sound events, hence allowing
the system to detect them whenever they occur [2]. This supervised
approach yields a reasonable performance especially in constrained
settings where the nature of sound events and background sounds
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is well captured by the labeled data available for training [3]. In
reality, however, a fully supervised approach has limited scalability
especially when dealing with everyday sound environments that can
vary drastically depending on the setting and density of the sources
present. Acquiring large amounts of fully-labeled data in uncon-
strained environments is practically infeasible. The challenges of
providing supervised data for event detection stem from the need to
not only identify sound events in a scene, but also accurately label
timestamps of occurrence of such events.

This, in turn, raises the question of potential benefits of unla-
beled data to augment supervised training methods. There is a grow-
ing number of corpora that represent various urban soundscapes, do-
mestic or workplace environments as well as everyday sounds (e.g.
[4, 5]). The abundance of such labeled datasets can enrich our ability
to tackle ambient sound analysis provided the right kinds of tools are
available to take advantage of both labeled and unlabeled data. In its
latest iteration, the DCASE 2018 task4 challenge focused on scenar-
ios with a large amount of unlabeled data along with a small set of
labeled data [6]. The availability of both data sets can be leveraged
in a number of ways. A number of approaches have been proposed
to supplement supervised training using unlabeled data by means of
data augmentation, which can result in improved training of the ma-
chine learning systems as well as more robust event detection accu-
racies [7, 8, 9]. In parallel, unsupervised techniques have also been
proposed to infer characteristics of sound events hence taking into
account the dynamics of sound classes [10, 11].

In the current work, we aim to leverage both the power of ma-
chine learning using a combination of labeled and unlabeled data to
learn the characteristics of event classes, as well as our knowledge
of the physical and perceptual attributes of sounds that can guide
the segmentation of sound events as they occur in a scene. The lat-
ter approach employs principles from bottom-up auditory attention
models where we know changes in sound structure are flagged by
the human perceptual system as salient events that attract our atten-
tion for further processing [1, 12, 13]. Detecting the onset and off-
set of these events of interest provides an anchor to our event label-
ing system that eliminates discontinuities in event labels as well as
minimizes false identification from our supervised system, resulting
in notable improvement over a pure label-guided classification sys-
tem. This work is an extension to our submission to DCASE 2018
[14], with more detailed analysis of subsystems and improved per-
formance on the evaluation data. Section 2 provides an overview of
related event detection systems, and focuses on prior work that has
leveraged deep learning to tackle the challenge of event detection,
much in the same vein as the proposed model. Section 3 presents
the proposed system for event detection and details the interplay
between a bottom-up, acoustic-driven analysis and top-down super-
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vised approach. The experimental setup is described in Section 4
while the system performance and comparison to baseline systems
is presented in Section 5. Finally, Section 6 discusses concluding
remarks and future directions.

2. RELATED WORK

A large body of work related to event detection systems has focused
on innovations to feature representations that provide a suitable task-
relevant mapping of the raw acoustic signal (e.g. [15]). More re-
cently, progress in deep learning methods has provided a notable
jump in performance over conventional modeling methods for event
detection systems (see [2, 16] for a review). All best performing
systems in event detection tasks in DCASE 2016 [17] and DCASE
2017 [18] include some formulation based on deep neural networks
(DNN) with various flavor. While such DNN systems are gener-
ally quite powerful for their specific tasks, their performance is often
limited to the exact configuration of the task itself. In [18], convo-
lutional recurrent neural networks were used in a semi-supervised
setting to provide notable performance improvements in segment-
based evaluations, but they performed rather poorly on event-based
evaluations in a similar task for DCASE 2018 [6].

Generative models such as Restricted Boltzmann Machines
(RBMs) and Conditional RBMs (cRBMs) have also been used to
model audio scenes in high-dimensional representations [19]. These
models follow in the tradition of exploring robust feature repre-
sentations for audio signals and can in fact reliably track multiple
audio streams by encoding their regularities over new embedding
spaces. In [20], mixtures of cRBMs were shown to predict unex-
pected events in a noisy subway station with high precision by locat-
ing time windows that deviate from an underlying statistical struc-
ture of the scene. In the present study, we employ similar models
based on RBMs in order to leverage their generative nature with a
focus on onset detection unlike a discriminative method [21].

3. PROPOSED ARCHITECTURE

The proposed system combines a bottom-up (acoustic-driven) and
top-down (label-guided) approach to detect sound events. Figure 1
delineates the proposed methodology with an example. The bottom-
up approach relies solely on acoustic characteristics of the audio
signal to flag changes over time as captured in a high-dimensional
mapping of the signal. The top-down approach is a supervised label-
driven characterization of the sound labels derived from a DNN. The
outputs are then combined with the bottom-up subsystem providing
guidance to the windows of interest while the top-down subsystem
characterizes the labels for these windows.

3.1. Event boundary detection

Event boundaries are identified in a purely acoustic-driven manner
by tracking changes in acoustic properties of the input audio. We em-
ploy a generative framework to extract a rich mapping of the acoustic
waveform that captures both local and global spectro-temporal regu-
larities in the signal. The output of this representation is a rich array
of activations in a high-dimensional space which allows tracking au-
ditory events with different spectro-temporal characteristics.

This acoustic analysis is structured as a hierarchical system with
3 main stages as shown the top block of figure 1. First, a 128 chan-
nel biomimetic auditory spectrogram S(t, f) is extracted from the
input audio with integration over 10ms and a frame-shift of 10ms

[22]. 3 consecutive frames of S(t, f) are stacked to produce a tem-
poral context of 30ms and are used as input to a Restricted Boltz-
mann Machine (RBM) [19, 23]. The RBM, trained using Contrastive
Divergence (CD), is a generative model and is expected to capture
local spectro-temporal dependencies of the incoming audio signal.
Gaussian-Bernoulli units are used to model visible-hidden connec-
tions. After training, RBM weights (W) and hidden bias (b) are used
to transform input data (v) as given in (1).

hi =
∑
j

vjWji + bi (1)

The next stage in the acoustic mapping further processes RBM
outputs (h) using an array of 10 conditional RBMs [24, 25]. The
cRBM array further analyzes the output of the first stage along a
range of temporal contexts from 30ms to 300ms, hence capturing
global dynamics in the signal and tracking events with different
temporal characteristics. The cRBM layer also employs Gaussian-
Bernoulli visible-hidden units and is trained using CD. The weights
(W, A) and biases (b) of the cRBM array are used as an affine
transform to generate a final high-dimensional representation of the
acoustic signal, as given in (2).

bti =
∑
j

ht−1
j Aji + bi

cti =
∑
j

ht
jWji + bti

(2)

The activations across the nodes of each cRBM network are fur-
ther processed using Principal Component Analysis (PCA) to get
directions of maximal variance and reduce dimensionality to 16 di-
mensions per cRBM [26]. The PCA outputs are then processed
through first-order difference and smoothed using a moving aver-
age with window length inversely proportional to the cRBM context
length. The smoothed derivatives from all the PCA outputs from all
the cRBMs are summed to produce a measure of activity in time.
We flag local maxima in this activity to indicate notable changes in
the acoustic signal and hence a likely index of increased acoustic
event activity. The closest preceding sample at 25% of the detected
peak is marked as the onset point. In parallel, event offsets are an-
alyzed using the short term energy (STE) of the audio signal. STE
is computed using a 20ms window and is thresholded to locate low-
activity points immediately following the detected onsets from the
upper branch. These low-activity points paired with corresponding
onsets form the event boundaries.

3.2. Event labeling

To label the acoustic event detected by the bottom-up approach,
we employ a deep neural network trained to classify given sound
classes. This neural network outputs a posterior of acoustic events
for each frame, which is combined with the event boundary detection
results for the class inference of acoustic events.

3.2.1. Convolutional recurrent neural network

For the classification of acoustic events, we apply a convolutional
recurrent neural network (CRNN), which is used as the baseline sys-
tem for task 4 of DCASE 2018. This is depicted in the bottom block
of fig. 1. The acoustic features used in this system consist of 64-
dimensional log mel-band energy extracted in 40 ms Hamming win-
dows with 50% overlap. The log mel-band energy is then fed to the
CRNN, which has three 2-D convolutional layers and then a layer
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Fig. 1. Proposed system for acoustic event detection. The system consists of 2 main components that operate in parallel: (i) the event
boundary detection (top branch) which operates as a purely acoustic-based unsupervised analysis and yields time stamps of onsets and offsets
of events of interest; and (ii) the event labeling (bottom branch) which is a supervised network trained to provide probabilistic labels of events
in the input audio.

of bi-directional gated recurrent units (BiGRU) followed by a dense
layer with sigmoid activation to compute posterior probabilities of
the different sounds classes. Pooling along the time axis is used in
training with the segment-level labels, but is omitted for inference in
order to yield frame-level estimations.

3.2.2. Label inference

An acoustic event label is given to the unlabeled event by calculating
an average posterior of each acoustic event in the active duration.
The labels are chosen based on a maximum posterior criterion. An
example of the labeling process is shown in fig. 1.

4. EXPERIMENTAL SETUP

4.1. Dataset

The dataset used to test this system consists of the data provided for
Task4 of the DCASE Challenge 2018. It is a subset of Audioset
drawn from Youtube videos and consists of various sound classes
occurring in domestic contexts [5]. Training data includes 1578 au-
dio files labeled at the segment level (referred to as weakly labeled
data) along with 14,412 unlabeled in-domain 39999 out-of-domain
files. Test data consists of a development set (Dev) with 288 audio
files and an evaluation set (Eval) with 880 audio files. Test data is
annotated with time boundaries for each labeled event. Test files can
have more than one event of the same or different class with some
events even overlapping with other events. In our system, we used
only weakly labeled and unlabeled in-domain training data for both
the unsupervised and supervised models.

4.2. Evaluation metric

Event detection is evaluated event-by-event using the macro average
and micro average of F-scores. Macro average is computed as the

average of class-wise F-scores and micro average is the F-score of
all events irrespective of classes. Error rate (ER) is used as a sec-
ondary metric to assess errors in terms of insertions, deletions, and
substitutions. sed eval toolbox [27] is used to compute F-scores and
ER. Onsets are evaluated with a collar tolerance of 200ms. Tolerance
for offsets is computed per event as the maximum of 200ms or 20%
of event length. An event is considered to be a hit only when the
predicted label matches with the ground truth and the event bound-
aries correspond to the annotated boundaries. Hence any mismatch
in either the labels or boundaries will result in a false positive and a
false negative.

4.3. Baseline system

DCASE 2018 baseline system [6] is considered as the baseline sys-
tem. The baseline system is a CRNN with 3 CNN layers and 1 Bi-
GRU layer, trained in two stages. During the first stage, weakly
labeled data is used for training with an objective of predicting the
label at clip level. The first trained model is used to define labels
for the unlabeled in-domain data, which is then used in the second
stage of training. Training progress is monitored using a held-out
validation set. During the first stage of training, 20% of weakly la-
beled data is used as the validation set and during the second stage of
training, the entirety of the weakly labeled data is used as the valida-
tion set. 64-dimensional log Mel-band magnitudes are used as input
features and the whole sound clip is given as the input to the CRNN
which uses 2-D convolution in time and frequency. During test time,
strong labels are assigned based on the posterior probabilities and
smoothed using a median filter of length 1s.

4.4. System training

In the proposed system, both bottom-up and top-down subsystems
are trained independently. The RBM-cRBM model for event bound-
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ary detection is trained using weakly labeled and unlabeled in-
domain training data. The number of hidden units is fixed at 350 for
the RBM and 300 for the cRBM models. Both models are trained
using a contrastive divergence-based gradient descent with 10 sam-
pling steps.

For the event labeling subsystem, we compare 3 variants of
the top-down module described above in Section 3.2.1. In System
1, event labels are predicted with a CRNN trained using only the
weakly labeled data. In System 2, the CRNN is trained using weakly
labeled data (1,578 clips) and augmented data (1,080 clips) which
are generated by mixing multiple weakly labeled clips. In Systems 1
and 2, the number of channels, kernel size, stride and pooling size in
the convolutional layers are {128, 128,192}, {1×3, 1×3, 1×3}, {1,
1, 1}, and {1×8, 1×4, 1×2}, and the number of GRU units is 64.
System 3 uses predictions from the baseline system. An ensemble
system uses majority vote on predictions from Systems 1-3. All pa-
rameters are tuned to maximize the performance on the development
set.

5. RESULTS

Table 1 compares the performance of the proposed systems with the
baseline system for both Dev and Eval sets. As noted in the table,
the proposed method improves significantly over the baseline model
in terms of F-score and error rate. The Ensemble system shows the
best performance and improves over the baseline by 15.18% on Dev
and 14.80% on Eval set. Both development and evaluation sets yield
similar performance improvements across all systems, validating the
generalization ability of the proposed method.

Looking closely at the detection scores, System 3 highlights the
contributions of the acoustic-driven branch of the proposed system
relative to the baseline system, since System 3 in fact utilizes the
posteriors from the baseline system itself. It is also worth noting
that both System 1 and System 2 are trained only using the weakly-
labeled dataset. Their performance seems to indicate that labels de-
rived from weakly labeled data are more accurate.

Table 1. F-score and error rate in event-based metrics

Method Dev Eval
F-score Error rate F-score Error rate

Baseline 14.87% 1.52 10.80% 1.77
System 1 29.31% 1.40 23.58% 1.25
System 2 29.69% 1.44 23.88% 1.34
System 3 27.20% 1.46 23.74% 1.21
Ensemble 30.05% 1.36 25.40% 1.19

We look closely at the system performance across the different
sound classes present in the dataset. Table 2 compares the perfor-
mance for individual classes on Dev and Eval sets. To analyze the
performance for different classes, we separate the events into small
duration (average duration ≤ 2s) and long duration (average dura-
tion > 2s) events. This analysis sheds light on an interesting pattern.
The proposed system appears to perform better compared to baseline
for classes with smaller duration (marked with * in table 2); whereas
it does not yield any notable improvements relative to baseline on
longer duration events. This can be attributed to two factors. Firstly,
event boundaries detected using our system are more accurate for
smaller duration events as these events do not have overlapping ac-
tivity from other events. The acoustic-driven analysis does in fact
track the statistical regularity of the incoming signal, hence allowing

it to detect deviations in this regularity. The presence of overlap-
ping events weakens the efficacy of this tracking process and sub-
sequently the effectiveness of boundary detection on longer events.
Secondly, the tolerance for error in offset is defined to be higher for
longer events which minimizes the impact of boundary errors.

Table 2. Class-wise F-score (* marks short-duration events)

Class Dev Eval
baseline ensemble baseline ensemble

Alarm/Bell* 5.0 34.9 4.8 43.5
Blender 17.8 20.3 12.7 24.0

Cat* 0.0 31.2 2.9 21.9
Dishes* 0.0 17.8 0.4 12.7

Dog* 0.0 48.1 2.4 28.9
Electric shaver 35.1 22.6 20.0 30.5

Frying 29.4 10.5 24.5 0.0
Running water 10.3 33.3 10.1 11.6

Speech* 0.0 36.2 0.1 34.9
Vacuum cleaner 51.1 45.5 30.2 45.8

In order to further examine the contribution of the acoustic-
driven analysis to the overall event detection system, we further an-
alyze the performance of different components of the proposed sys-
tem by looking at individual modules in the pipeline. Table 3 shows
performance of onset detection, offset detection, onset-offset com-
bination and finally overall system performance. For this analysis,
we computed F-score only on the corresponding annotation. For ex-
ample, for onset detection, we compute F-score excluding offset and
labels and for onset-offset, we exclude labels. This comparison in-
dicates that event labeling is poor in classifying the detected events,
which deteriorates the overall performance significantly. We believe
this gap can be closed by designing classification systems that are
better at classifying the segments of detected events.

Table 3. F-scores (Macro average for different subsystems)

Metric Dev(F%) Eval(F%)
Onset only 62.35% 59.97%
Offset only 59.67% 54.10%

Onset+Offset 47.07% 41.66%
Onset+Offset+Label 30.05% 25.40%

6. CONCLUSION

In this work, we propose a segmentation and recognition method
for sound event detection based on joint unsupervised and semi-
supervised methods. This approach combines acoustic-driven event
boundary detection and supervised acoustic event classification to
annotate sound events in complex acoustic scenes. One of the ad-
vantages of a parallel analysis of the incoming signal is to lever-
age not only known information about sound event classes (as cap-
tured by dataset labels) but also the inherent structure of these classes
that distinguishes them from other classes. The use of a generative
framework in the form of RBM-cRBM networks enables the track-
ing of these statistics in an appropriate embedding space which is
subsequently used to flag deviations corresponding to new events.
An interesting follow-up direction is to explore commonalities in
these generative embedding spaces and those generated by the event-
labeling model which is constrained by the sound classes.
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