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ABSTRACT
Labelled data are often required to train an acoustic scene
classification system. However, it is time-consuming and ex-
pensive to label the data manually. An unsupervised cluster-
ing algorithm can be used to facilitate the labelling process
by dividing the acoustic data into different categories. Nev-
ertheless, it can be problematic to run a clustering algorithm
with growing data volume and dimension due to the sharp in-
crease in the computational and memory costs. We propose a
new streaming based subspace clustering algorithm which al-
lows the data to be clustered on the fly, and also resolves data
points in the overlapping regions of two subspaces by aug-
menting the learned low-rank representation with the origi-
nal data samples. Experimental results show that our method
can achieve the clustering objective for overwhelmingly high-
volume data in an online fashion, while retaining good accu-
racy and reducing the memory cost significantly.

1. INTRODUCTION

Acoustic scene classification has attracted much research at-
tention recently [1]. Labelled acoustic data, are often required
to train the classification system. However, in practice, data
labelling is an expensive and time-consuming task. A po-
tential solution to the issue is to cluster the audio data by an
unsupervised learning algorithm.

Subspace clustering is a powerful technique for learning
class labels in high-dimensional data in an unsupervised man-
ner. Compared to conventional clustering algorithms such as
k-means [2] which rely on the spatial distances and centroids
of the clusters, subspace clustering algorithms offer the poten-
tial to capture the clusters in different subsets of dimensions
[3], and provide more reliable clustering results in scenarios
with high dimensional datasets such as image clustering [4]
and moving trajectory segmentation [5]. Recently, subspace
clustering has also been used for acoustic scene [6] and vehi-
cle sound classification [7].

Subspace clustering algorithms aim to divide a set of high
dimensional data according to their intrinsic subspace distri-
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butions. Conventional subspace clustering algorithms include
Generalized PCA [8], [9], K-subspace clustering [10], [11],
and Agglomerative Lossy Compression [12]. Recently, the
spectral clustering based subspace clustering methods, such
as Sparse Subspace Clustering (SSC) [13] and Low-Rank
Representation (LRR) [14], have drawn significant attention
due to their outstanding performance. Nevertheless, these
methods suffer from unaffordable computational and mem-
ory costs when dealing with overwhelmingly large datasets.
The acoustic dataset considered in this paper, for example,
has a large data volume, and is impractical to be clustered by
batch methods.

To solve the computational problems, methods such as
scalable-SSC [15] and sketched subspace clustering [16] have
been proposed. These methods can simplify the computation,
however, a large memory space is still needed. To address this
problem, a method for streaming data has been introduced in
[17, 18], based on LRR and matrix factorisation, and offers
low memory cost. However, the clustering performance of
such methods degrades when dealing with overlapping sub-
spaces, and their convergence is relatively slow, often taking
a large number of data points to converge.

In this paper, we propose two improvements to the stream-
ing based subspace clustering algorithms, where the distance
based clustering is used to augment the low-rank subspace
clustering and to facilitate the resolution of the data points in
the overlapping regions of the subspaces, and a new warming-
up scheme is proposed to improve the convergence of the
streaming algorithm.

2. BACKGROUND

The subspace clustering models and typical algorithms are re-
viewed in this section.

2.1. Subspace Clustering

For a set of high-dimensional data, which consist of data
points from varied categories, the intrinsic dimension of each
category is usually smaller than the ambient dimension [19].
Subspace clustering aims to determine the data segmenta-
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tion according to subspace memberships. In the popular
spectral clustering method, the pairwise similarities between
data points are used to segment data into several groups, by
maximizing the intra-group similarities while minimizing the
inter-group similarities, based on an affinity matrix formed in
terms of pairwise affinities.

To construct the affinity matrix, a coefficient matrix C is
often obtained by optimising the following cost function

min
C
‖C‖` +

λ

2
‖X −AC‖2F (1)

where X and A stand for the data matrix and a set of basis
respectively. Entries of C are the representation coefficients
of X in terms of A. The regularizer ‖ · ‖` is a matrix norm,
e.g. the `1 norm for SSC, and the nuclear norm for LRR. A
symmetric affinity matrix W , can be constructed as W =
|C|+ |C>|, where | · | takes the element-wise absolute value.

The LRR algorithm utilises the low-rank representation
coefficients to obtain the data affinity, where the nuclear-norm
is often used to enforce the low-rank property. Since the
nuclear-norm can be converted to a minimization of the sum
of two Frobenius-norms of matrices [20], it offers the poten-
tial for the LRR to be solved in a streaming manner, thus re-
ducing the memory cost for their implementation.

2.2. Online Low-Rank Subspace Clustering

The online implementation for subspace clustering has been
introduced to mitigate the high memory cost of an overwhlm-
ingly large input dataset [18, 21]. In terms of [22], the coeffi-
cient matrix C ∈ RN×N can be represented by two low-rank
matrices, exploiting the property

‖C‖∗ = min
C=UV >

1

2
(‖U‖2F + ‖V ‖2F ) (2)

where U ,V ∈ RN×r, and r denotes the supremum of the
rank of C. For the LRR case, applying this property to (1),
the loss function optimisation becomes

min
U ,V

1

2
‖U‖2F +

1

2
‖V ‖2F +

λ

2
‖X −AUV >‖2F (3)

The matrix C can be obtained by solving this cost.
Traganitis and Giannakis [17] proposed a streaming

method to solve the above loss function, by using a smaller
basis matrix A ∈ RD×n (n � N ), so that U ∈ Rn×r with
a concomitant decrease in the number of rows. It is assumed
that the tth column of the data matrix xt is known by the
system at time t ∈ {1, 2, · · · , N}. Letting ui and vi denote
the ith column of U and V >, and Ut and Vt to denote U and
V at time t, the algorithm updates vt and Ut alternatively
with stochastic gradient descent [23]. However, the matrix A
needs to be representative of the whole dataset X , and the
selection of A requires a uniformly sampling or sketching
of X , which needs prior knowledge about the whole dataset

before running the streaming algorithm. Thus, this algorithm
is not easy to be implemented in a full online manner.

Shen et al. [18] proposed an online low-rank subspace
clustering (OLRSC) method. Different from the previ-
ous method, they use a basis matrix A ∈ RD×N . Thus,
U ∈ RN×r cannot be updated in a batch mode due to the
unknown dimension N and the requirement for a large mem-
ory space. To address this, an auxiliary matrix G ∈ RD×r

is introduced, and G = AU , which is no longer related to
N . Then, G can be derived in a batch mode at each time
point. In addition, a sparse corruption of data, denoted by E,
is taken into account, with a sparse constraint promoted by
the `1 norm. Consequently, the loss function becomes

min
G,U ,V ,E

λ1
2
‖X −GV > −E‖2F + λ2‖E‖1

+
λ3
2
‖G−AU‖2F +

1

2
‖U‖2F +

1

2
‖V ‖2F

(4)

To solve it in an online manner, xt and at are used to denote
the tth column of X and A, i.e. the input at time point t.
Meanwhile, ei, ui, and vi denote the ith columns of E, U>,
and V > (ei,ui,vi ∈ RD, i ∈ [1, ..., N ]), respectively, and
Gt denotes G generated at time t. Then the loss at time t can
be rewritten as

min
G,u,v,e

1

2
‖ut‖22 +

1

2
‖vt‖22 +

λ1
2
‖xt −Gtvt − et‖22

+ λ2‖et‖1 +
λ3
2
‖Gt −

t∑
i=1

aiu
>
i ‖2F

(5)

By fixing other variables in (5), vt, et, ut and Gt can
be solved iteratively, by a coordinate descent algorithm [24].
Only three D × r accumulators are used and as a result, the
memory cost is saved. Afterwards, C can be generated by
C = [u1, ...,uN ]> × [v1, ...,vN ]. The spectral clustering
can be applied as post-processing to obtain the clusters.

Alternatively, the k-means algorithm [25] could be ap-
plied on [v1, ...,vN ] as post-processing, which has the loss
function optimisation abstracted as

min
S

K∑
k=1

∑
v∈Sk

‖v − pk‖22 (6)

where Sk denotes the kth cluster, and pk is the centroid of the
kth cluster. Using an online k-means algorithm [26] with vi,
a fully online implementation can be achieved. In [18], it is
claimed that vi is a robust feature for the ith sample.

Experiments have revealed that OLRSC obtained good
clustering accuracy [18], with a streaming implementation
and low memory costs, hence OLRSC is our focus here. How-
ever, we observed that OLRSC is degraded when dealing with
intersecting (overlapping) subspaces, and the convergence of
this algorithm is relatively slow with our acoustic dataset. To
address these problems, we propose new ideas for improve-
ments, as discussed next.
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Fig. 1. Clustering results by (a) OLRSC and (b) the proposed
JOLRSC for points in two 2-D subspace with low noise.

3. THE PROPOSED METHOD

3.1. Dealing With Overlaps Between Subspaces

The OLRSC method is based on the LRR and matrix factori-
sation algorithm. Typically, batch LRR comes from the fact
that each point in a subspace can be represented by a linear
combination of several other points within the same subspace,
but the spatial distances between points are not considered for
clustering. In [27], Hu et al. considered the effect of spatial
distance for clustering. They introduced a penalty related to
the spatial distance to the loss function for clustering, and ob-
tained improved clustering results. This gives us the intuition
that, the performance of OLRSC could be improved by con-
sidering the spatial distance.

In addition, the effectiveness of batch LRR is based on
an assumption that subspaces are independent [14], i.e. the
sum of dimensions of subspaces is equal to the dimension
of the space spanned by all the subspaces. Since OLRSC is
an online implementation of the batch LRR, the effectiveness
of OLRSC also relies on the subspace independence. Once
there are intersections between subspaces, the low-rank rep-
resentation may not be reliable. Clustering performance of
OLRSC can be adversely affected by this. As shown in Fig.
1 (a), when the data points in two subspaces are clustered by
OLRSC, some points within one subspace (blue points) are
clustered into another (red points). This is because subspace
clustering is only based on subspace distributions, regardless
of the spatial distance.

To address this problem, we introduce the spatial distance
to further improve subspace clustering. In [27], a constraint
based on the spatial closeness of points is used, in order to
enforce neighbouring points to be partitioned into the same
cluster. In such method, the k nearest neighbour graph is
generated, representing the pairwise closeness. Their experi-
ments show that considering the spatial closeness can be ben-
eficial for improving the clustering performance. However,
this method cannot be easily employed with the OLRSC al-
gorithm, because the k nearest neighbour can hardly be ex-
tracted in an online manner. Nevertheless, the traditional clus-
tering algorithm, such as k-means, utilises the spatial dis-
tances to partition each data point into the cluster that contains
the nearest centroid to the point. As mentioned in Section 2.2,
the OLRSC method employed the online k-means on v. Ac-

cordingly, the k-means can be easily implemented on the data
x ∈ RD. As the k-means can be applied with both x and v,
once a point is attached to Sk, both x and v are attached to
Sk. Therefore, we propose the following joint objective

min
S

K∑
k=1

∑
x,v∈Sk

‖v − pk‖22 + λo

K∑
k=1

∑
x,v∈Sk

‖x− qk‖22 (7)

where λo considers the trade-off between k-means for v and
x. The associated cost can be re-written as follows

f(v,x) =

K∑
k=1

∑
x,v∈Sk

‖v − pk‖22 + λo

K∑
k=1

∑
x,v∈Sk

‖x− qk‖22

=

K∑
k=1

∑
x,v∈Sk

∥∥∥[v> √
λox

>]> − [p>k √
λoq

>
k

]>∥∥∥2
2

(8)

which can be plugged into (7). Based on this, the online
k-means will be applied to

[
v>

√
λox

>]> in our system,
rather than the vt of (5) in OLRSC. We call this approach
as Joint OLRSC (JOLRSC). Fig. 1 (b) shows an example of
the clustering result obtained by JOLRSC, with a significant
improvement over the baseline OLRSC.

3.2. A Warm-Up Strategy to Speed up Convergence

In practice, the matrix G is initialised randomly, the cluster-
ing accuracy for the early input data points can be quite poor,
since the matrix Gt+1 at time t+1 can be very different from
Gt at time t. As vt is derived from Gt, vt is not a reliable
feature for clustering if G has still to converge. When the
data volume is large, the average accuracy will not be much
affected. However, if the early input data are important, vi-
tal information may be lost because of the poor performance
with the early data.

One solution would be to pass sufficient number of data
points through the OLRSC system, to obtain a converged G
as the initial value. However, we observed that for the acous-
tic dataset the convergence could be slow, and as a result, this
incurs a large extra memory cost. Otherwise, we can pass a
smaller subset of data through the OLRSC system, and pre-
dict the converged value based on the trend of G. In our ex-
periment, we initialise the i, jth element of G as

gij = gij(M)L+1/ gij(0)
L (9)

where gij(0) is a random matrix, and then update it with a
small subset of data, which haveM inputs. The updated gij is
denoted by gij(M). The constant L is relevant to the number
of clusters K. The predicted G is close to the converged G
in terms of magnitude, and can converge quickly. In this way,
O(MD) memory is needed to store the subset of data, much
less than O(ND) to store the whole dataset (M � N ). In
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practice, M < r, thus the memory cost remains to be O(Dr)
in total. Apart from the memory cost, the extra computational
cost is only slightly increased. Our experiments show that this
approach is effective in improving the convergence.

4. EXPERIMENTAL EVALUATIONS

4.1. Dataset and Performance Index

Since our objective is to cluster a set of unlabelled audio data,
in our experiments, we employed the TUT Acoustic Scenes
2017 dataset [28, 29] to evaluate our algorithm. The acoustic
signals were recorded from 15 different urban scenes with two
channels. Recording environments include: lakeside beach,
bus, cafe/restaurant, car, city center, forest path, grocery store,
home, library, metro station, office, urban park, residential
area, train, and tram. Each scene has 312 audio clips of 10
seconds. The original sampling rate is 44100Hz. The perfor-
mance of each algorithm is estimated by the clustering accu-
racy, defined as the ratio of the number of correctly clustered
data to the number of data points in the whole set.

4.2. Feature Extraction and Pre-processing

Mel-Frequency Cepstral Coefficients [30] are derived. Audio
clips are re-sampled to 16kHz. Then they are filtered by a
mel-filter bank after taking a Fast Fourier Transform. The
frame length and hop size are set to 256 and 160, respectively.
Twelve DCT coefficients of the logarithm are retained. We
took the 1st and 2nd order time differential derivatives and
obtained 36 features per frame. For each clip, 995 frames are
obtained. Therefore, for each audio clip, we have a 36× 995
feature matrix, which is then reshaped into a vector of 35820
elements and used as the data vector.

4.3. Experimental setting of JOLRSC

For the TUT Acoustic Scenes 2017 dataset, we have K = 15
different categories, and N = 4680 audio clips. Each data
vector has D = 35820 dimensions. We set the basis matrix
A equal to the data matrix X , r = 20K, M = 10K, and
L = 20K. Experiments have been carried out for 50 trials.

4.4. Initialisation of OLRSC

As mentioned in Section 3.2, the clustering accuracy with
data before convergence is not good. We evaluate how the
performance of the OLRSC algorithm changes with respect
to the streaming acoustic data given. As shown in Fig. 2,
the red line denotes the accuracy of OLRSC with the first 300
data points, and the green line denotes the accuracy after em-
ploying our proposed initialisation method. It can be seen that
after approximately 100 data points, the two lines in the fig-
ure twisted. However, the clustering accuracy of the initial
100 data points is significantly improved by our approach.
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Fig. 2. Accuracy of first 300 data points, with the proposed
initialisation method (green) and randomly initialised (red)

Table 1. Average accuracy (%) of subspace clustering algo-
rithms compared on the TUT Acoustic Scenes 2017 dataset.

Methods OLRSC-S OLRSC-K JOLRSC
Accuracy(%) 22.36 43.64 45.84

Methods SSSC SLRR k-means
Accuracy(%) 25.31 31.60 38.58

4.5. Performance of approaches

We compare the proposed algorithm with two baselines
OLRSC and k-means. As typical batch subspace clustering
algorithms, LRR and SSC obtained good performance. How-
ever, both LRR and SSC have unaffordable computational
complexity with our acoustic dataset because of the large
volume. Thus, we use two scalable version of such methods,
scalable SSC (SSSC) [31] and sketched LRR (SLRR) [16]
instead, for the comparison with our method. For the OLRSC
and JOLRSC methods, to reduce running time caused by the
high dimensionality of data, we utilise the random projection
algorithm [32] to reduce the data dimension from 35820 to
2000 as pre-processing. The results are presented in Table
1, where the OLRSC-S denotes the OLRSC followed by the
spectral clustering to obtain the subspace memberships, while
OLRSC-K denotes the OLRSC with k-means. Results of both
OLRSC-S and OLRSC-K are obtained after algorithm’s con-
vergence. It is clear that our JOLRSC method outperforms
other compared methods. Importantly, by introducing a joint
clustering method with k-means as well as a new initialisation
scheme, our method improved the performance of OLRSC.
Additionally, as mentioned in Section 2.2 and Section 3.2,
our method reduces the memory cost from O(N(N +D)) of
the batch LRR to O(Dr).

5. CONCLUSION

We have introduced a JOLRSC algorithm for clustering
streaming data, by considering the closeness of data points
in online spectral clustering, based on the OLRSC algorithm.
We also improved the convergence of the algorithm with a
new warm up scheme. The algorithm can deal with datasets
of large data volume, which cannot be handled by the batch
methods. Effectiveness of our approach has been confirmed
by the experiments with an acoustic dataset.
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