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ABSTRACT
The paper introduces a hierarchy-aware loss function in a Deep Neu-
ral Network for an audio event detection task that has a bi-level tree
structured label space. The goal is not only to improve audio event
detection performance at all levels in the label hierarchy, but also to
produce better audio embeddings. We exploit the label tree struc-
ture to preserve that information in the hierarchy-aware loss func-
tion. Two different loss functions are separately employed. First, a
triplet loss with probabilistic multi-level batch mining is introduced.
Second, a quadruplet learning method is applied, which is a special
case of generalized triplet learning for bi-level label taxonomy. The
training is performed in a multi-task learning framework by jointly
optimizing cross entropy based loss and hierarchy-aware loss func-
tion. The proposed method is found to outperform the baseline cross
entropy based models at both levels of the hierarchy. The multi-task
model is also able to learn better audio representations as observed in
our clustering experiments. Moreover, the model is shown to trans-
fer well when an out-of-domain dataset is used for evaluation.

Index Terms— Hierarchical audio event detection, metric learn-
ing, triplet loss, quadruplet loss, convolutional neural network.

1. INTRODUCTION

Audio Event Detection (AED) deals with understanding and rec-
ognizing the semantic class (generally human annotated) associated
with an audio recording. Recently it has gained popularity [1, 2, 3]
due to its numerous applications in surveillance [4, 5], audio con-
tent understanding and retrieval [6], context detection [7], and even
health monitoring systems [8].

Generally, an audio events ontology is hierarchical in nature [2,
9, 10] because inherently it is easier for humans to identify (and
hence annotate) first the coarse class of the audio (e.g., vehicle), and
then the fine class (e.g., bus). This paper focuses on detecting audio
events that have a hierarchical relationship in their human annotated
label space. We have two complementary objectives:

1. Train a model that can identify the audio events satisfactorily
at all levels in the label hierarchy, possibly by exploiting the
hierarchical label taxonomy.

2. The model should be able to produce a distinctive audio em-
bedding [11] or representation [12] that tries to follow the
label hierarchy in a lower dimensional manifold with respect
to some distance measure.

One classical approach [13] for AED is GMM fitting on the “bag
of frames” modeling of the audio recording and applying KL di-
vergence measure between different GMM models. MFCC features
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are popular for this kind of approaches. Chu et al. [14] proposed
a matching pursuit technique for finding useful time-frequency fea-
tures to complement MFCC features, and obtained improved perfor-
mance. Later, time series models such as HMMs were employed
to better use context over time [15]. A detailed survey of non-deep
learning approaches can be found in [1]. Recently Deep Neural Net-
work (DNN) [16] has shown promise for AED. A DNN based ap-
proach was shown to outperform GMM in [17] for classifying 61
audio classes. In [18], a Convolutional Neural Network (CNN) was
shown to extract robust features for noisy AED task. Some other
works [19, 20] also showed potential of CNN in extracting robust
features directly from the spectrogram for AED. In 2017, Google
released an AED corpus, AudioSet [2] containing ∼ 1.8M 10s ex-
cerpts from YouTube videos, which is much larger than the previous
datasets. Again, CNN based models like ResNet-50 [21] gave quite
satisfactory performance (0.959 AUC) [3] for classifying 485 audio
classes on AudioSet.

Surprisingly, little work can be found in the field of AED that
directly address the problem of hierarchical classification in audio
event taxonomy [10, 9]. Xu et al. [22] proposed a DNN based multi-
task learning method to solve this problem for a dataset having 3
coarse classes and 15 fine classes. Pre-training the DNNs [22] sep-
arately for coarse and fine classes was found to be helpful before
applying the weighted multi-task (coarse- and fine-level classifica-
tions) cross entropy objective function. But, the number of audio
classes were very limited in this work.

In this paper, our application requires dealing with an unprece-
dented number (∼ 5K) of specific AED classes defined on a hierar-
chical ontology similar to AudioSet. The goal of learning a distinc-
tive audio manifold guides us to employ a loss function that can har-
ness the hierarchy information of the label space, and force the em-
beddings to follow that through some imposed similarity constraints
during DNN training. The employed hierarchy-aware loss functions
are found to be complementary with standard cross entropy loss, and
together, in a multi-task learning setting, they improve the AED per-
formance at both higher and lower levels in the taxonomy.

The rest of the paper is divided into the following sections. Sec-
tion 2 introduces the hierarchical audio event dataset and the motiva-
tion behind applying hierarchy-aware loss function on it. Section 3
describes the methodology. Experimental settings are reported in
Section 4. Results and discussions are provided in Section 5. Finally
conclusions are drawn and future directions are given in Section 6.

2. HIERARCHICAL AUDIO EVENTS

2.1. Dataset
Our manually labeled hierarchical Audio Event (AE) dataset has

183 AE classes, and each class has one or more AE subclass(es). An
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Fig. 1: An example of the hierarchical audio events class structure
in our dataset.

example of the class hierarchy is shown in Fig. 1. We will represent
the dataset labels in two levels: “coarse” and “fine”. So, there are
total 183 coarse labels (e.g., vehicle, birds chirping etc. in Figure 1).
A fine class label carries information about both AE class (e.g., ve-
hicle) and subclass (e.g., bus). For example, fine label, ckl denotes
kth class and lth subclass of that class. There are total 4721 unique
fine labels. The dataset has around 230K audio samples with vari-
able durations. Each audio stream has only one audio event. The
dataset was manually recorded and annotated by professional sound
engineers.

2.2. Motivation to use hierarchy-aware loss
The complementary objectives, as introduced in Section 1, di-

rect us to learn fine-grained feature representation [23] in the data,
that can help comparing the audio events at different levels in their
taxonomy. A common approach is to learn distance metrics in the
embedding space by imposing similarity constraints during training.
Pairwise contrastive loss [24] and triplet loss [11] are some of the
popular metrics in the field of face recognition. But, these loss func-
tions do not consider hierarchical label structures as in the case of our
current AED problem. To solve this issue, we propose a variant of
the standard triplet learning by deploying a knowledge driven prob-
abilistic triplet mining that utilizes the hierarchy information while
sampling the triplets. In [23], the authors introduced a generalized
triplet learning, which has the inherent ability to work on label tree
structures. We also employ this method in our AED task. We build
a multi-task learning [25] framework where a multi-objective loss
function, combining the hierarchy-aware loss and cross entropy loss,
has been employed to train the DNN, inspired by some recent suc-
cesses in the computer vision field [23, 26].

3. HIERARCHY-AWARE LOSS ON TREE STRUCTURED
LABEL SPACE

3.1. Problem formulation
Let, D = {x1,x2, . . . ,xN} be a dataset of N variable length

audio samples having following labels in a bi-level hierarchy.

Coarse: LC = {y1, y2, . . . , yN} , yi ∈ {1, 2, . . . , C} (1)

Fine: LF = {z1, z2, . . . , zN} , zi ∈ {1, 2, . . . , F} (2)

Here, C and F are number of coarse and fine classes respectively
(F >> C). Please note that, as mentioned in Section 2.1, zi = ckl
carries information for both AE class and subclass. Our complemen-
tary objectives (as introduced in Section 1) can now be defined:

1. Train a non-linear mapping M such that it maximizes the
classification accuracy at both label spaces LC and LF .

2. Model M should also provide an intermediate mapping,
f(x) ∈ R

d, ∀x ∈ D and ||f(x)||22 = 1, that tries to
project audio on a manifold such that their mutual Eu-
clidean distances obey the order as found in the label
space hierarchy. To explain, let x1,x2 ∈ S1 ⊂ G1,
x3 ∈ S2 ⊂ G1, x4 ∈ S3 ⊂ G2. Here, Gi and Si denote
class and subclass respectively. Then, ideally in the embed-
ding space, ||f(x1) − f(x2)||22 < ||f(x1) − f(x3)||22 <
||f(x1)− f(x4)||22.

Note that the l2 normalization of the embeddings is required to con-
strain them to lie on the d-dimensional hypersphere [11]. Here, M
is the DNN with softmax(.) outputs. The embedding layer output,
f(x) is connected to multiple softmax(.) outputs (with C or F out-
put units depending on coarse- or fine-level training) through a single
linear layer.

3.2. Baseline DNN
We want to analyze the effect of introducing the hierarchy-

aware loss functions on standard cross entropy learning for AED
task. We separately train the baseline DNN (Section 4.1 describes
the architecture) with two Cross Entropy (CE) loss functions. First
(will be called “CE coarse”), we train it with coarse labels and the
following cross entropy objective function:

argmin
g

LCE coarse (g(x), y)

= argmin
g

1

N

N∑
i=1

− log
exp (g (xi, yi))∑C
j=1 exp (g (xi, j))

(3)

Here, g(xi, yi) = gi(f(xi)), denotes the final output of the DNN
for the ith class before applying softmax(.). So, this model is unable
to give fine representations, but it will help comparing the benefits of
hierarchy-aware loss at coarse level. The second model (“CE fine”)
is trained with the following fine grained cross entropy loss:

argmin
g

LCE fine (g(x), z)

= argmin
g

1

N

N∑
i=1

− log
exp (g (xi, zi))∑F
j=1 exp (g (xi, j))

(4)

This model will be able to predict at both levels.

3.3. Hierarchy-aware Loss
3.3.1. Balanced triplet loss

Triplet learning [11], inspired from contrastive pairwise learn-
ing [24], works on triplets (xa

i ,x
p
i ,x

n
i ) ∈ T that are sampled

from the training data D. Here, the anchor, xa
i and the positive sam-

ple, xp
i are from the same class; but the negative sample, xn

i is from
a different class. The global optimum in training data should find
f(.) such that, in the embedding space, they satisfy the constraint:

||f(xa
i )− f(xp

i )||
2
2 + α < ||f(xa

i )− f(xn
i )||22,

∀(xa
i ,x

p
i ,x

n
i ) ∈ T (5)

Here α > 0 is a margin parameter. This is done by minimizing the
following loss function:

argmin
f

1

NT

NT∑
i=1

LTri (f(x
a
i ), f(x

p
i ), f(x

n
i ), α) (6)

where NT = |T |, and

LTri (f(x
a
i ), f(x

p
i ), f(x

n
i ), α) =

max(||f(xa
i )− f(xp

i )||
2
2 + α− ||f(xa

i )− f(xn
i )||22, 0) (7)
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While sampling a triplet for training the DNN for hierarchical
AED task, one has the option to pick the negative sample either from
the same coarse class as the anchor but a different subclass, or from
a completely different coarse class from the anchor. Mining triplets
according to the uniform distribution does not consider the hierar-
chical label structure, and most of the negative samples are mined
(with a probability of C−1

C
>> 1

C
) from a coarse class that is differ-

ent from the anchor’s coarse class. So, the model mostly learns the
coarse representation, and not the fine one. To alleviate the problem,
we perform triplet negative mining in a probabilistic way so that the
model encounters around 50% triplets where the negative sample
comes from the same class but different subclass. If xa

i ∈ Si ⊂ Gj ,
then we choose xp

i s.t. xp
i ∈ Si. Here, Si, ∀i = 1, . . . , F is the

fine set containing xa
i , and Gj , ∀j = 1, . . . , C is the coarse set that

contains xa
i . The negative exemplar, xn

i is randomly sampled con-
ditioned on a Bernoulli distribution as follows:

xn
i = I(r = 0)× {xn

i : xn
i ∈ Gj and xn

i /∈ Si}
+I(r = 1)× {xn

i : xn
i /∈ Gj} (8)

Here, r ∼ Ber(0.5), and I(.) is the indicator function.

3.3.2. Quadruplet loss

The basic idea here is to generalize the triplet learning across mul-
tiple levels in the hierarchy [23]. For a bi-level tree like ours, a
quadruplet, (xa

i ,x
p+
i ,xp−

i ,xn
i ) ∈ Q is sampled from D, s.t., if

xa
i ∈ Si ⊂ Gj , then xp+

i ∈ Si and xp−
i /∈ Si but xp−

i ∈ Gj .
On the other hand, the negative is chosen s.t. xn

i /∈ Gj . The ul-
timate goal is to satisfy the following constraint in the embedding
space:

||f(xa
i )− f(xp+

i )||22 + α < ||f(xa
i )− f(xp−

i )||22 + β,

< ||f(xa
i )− f(xn

i )||22, ∀(xa
i ,x

p+
i ,xp−

i ,xn
i ) ∈ Q (9)

which is achieved by minimizing the objective function:

argmin
f

1

NQ

NQ∑
i=1

LQuad
(
f(xa

i ), f(x
p+
i ), f(xp−

i ), f(xn
i ), α, β

)
≜ argmin

f

1

NQ

NQ∑
i=1

[
LTri

(
f(xa

i ), f(x
p+
i ), f(xp−

i ), α− β
)

+ LTri
(
f(xa

i ), f(x
p−
i ), f(xn

i ), β
) ]

(10)

Here, LTri(.) is as defined in Equation (7), NQ = |Q|, and α and β
are two margin parameters satisfying α > β > 0.

3.4. Multi-task learning
As mentioned in Section 2.2, we train the DNN in a multi-task

learning environment (inspired by [23]) by imposing a joint objective
function to minimize:

LMulti = λLHAL + (1− λ)LCE fine (11)

where, λ ∈ [0, 1] and, LHAL is the hierarchy-aware loss function
and it can be either LTri or LQuad.

4. EXPERIMENTAL SETTING

4.1. DNN architecture
Inspired from the performance of deep CNN models in flat AED

tasks [3], we employ a slightly modified version of recently pro-
posed ResNet-18 model [21]. We change the input layer of the basic

ResNet-18 model to confront to the single channel spectrogram in-
puts, and the output layer depending on number of audio classes.
We replace the final average pooling layer by a fully connected layer
that goes to a 512 dimensional embedding layer. We perform l2 nor-
malization of the embeddings during training and evaluation. The
baseline model is trained end-to-end with cross entropy losses as de-
scribed in Section 3.2. The multi-task model is trained with joint
objectives as shown in Equation (11).

4.2. Data split
A dataset splitting has been performed to produce disjoint (in

terms of audio files) train (∼ 185K), validation (∼ 22.5K) and test
(∼ 22.5K) sets. Early stopping [16] has been used based on the
validation set performance for model selection. We should mention
that the chance accuracies of a majority guess classifier for coarse
and fine classification tasks are 4.65% and 1.1% respectively.

4.3. Features and parameters
64 dimensional mel spectrogram features have been extracted

from single channel audio streams having sampling rate of 48KHz
using moving window of 42.67ms (2048 samples) length and
10.67ms (512 samples) shift. Online batch mining is employed
during training for fetching triplets or quadruplets. Random win-
dows of 100 feature frames have been generated, and 100 × 64
dimensional samples are fed into the input CNN layer of the model
for training. We do not implement hard negative sampling [11] for
triplet or quadruplet mining to increase the training speed. Instead
we use a large batch size of 1024 samples to increase the probability
of finding some hard negative exemplars during random sampling.
We use 8 GPUs for training with data parallelism. We employ Adam
optimizer with a learning rate of 10−3 and l2 regularization penalty
of 10−6. For triplet loss, we have chosen α = 0.1. For quadruplet
loss, we have picked α = 0.2 and β = 0.1. The weighting factor,
λ in Equation (11), is chosen to be 0.5 based on the validation set
performance.

5. RESULTS AND DISCUSSIONS

5.1. Classification
Table 1 shows the performance of different methods for AED in

terms of classification accuracies. The predictions on a test audio
stream are generated by taking mean over all the posterior proba-
bilities (non-overlapping sliding windows of 100 frames). ‘Top k’
accuracy calculates the classification accuracy by observing whether
the true class is in the top k predictions. From the first two rows of
Table 1, we can see that the Cross Entropy (CE) loss on fine labels
gives a better Top 1 accuracy (even at the coarse level) than a CE
loss on the coarse labels only. This indicates that the model has the
ability to learn the fine labels and the knowledge of fine labels results
in a better representation for classification (even at the coarse level).

The training using the multi-task loss function (Equation (11))
provides much better results at both levels than only CE supervision.
We hypothesize that the hierarchy-aware loss helps to learn a better
embedding space by reducing intra-cluster distance and increasing
inter-cluster distance (in other words, following the constraints in
Equation (5) and (9) in the embedding space), and in turn helps the
CE loss. It can also be thought as a regularization term along with
standard CE. We achieve 3.14% and 3.88% absolute improvements
for Top 1 coarse (183-way), and fine (4721-way) classifications re-
spectively.

Comparison between balanced triplet and quadruplet learning
shows almost similar performance with quadruplet leading by a
small margin in case of classification with fine labels. This might be
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Table 1: Audio events classification accuracies of different models (CE=Cross Entropy)
Coarse-level Fine-level

Model Objective function (Section 3) Top 1 Top 3 Top 10 Top 1 Top 3 Top 10
CE Coarse Equation (3) 71.46% 85.82% 94.30% N/A N/A N/A
CE Fine Equation (4) 75.58% 85.79% 92.35% 65.82% 77.30% 84.44%

Multi-task (CE+Triplet) Equation (6),(11) 78.72% 87.42% 93.39% 69.57% 79.76% 86.23%
Multi-task (CE+Quadruplet) Equation (10),(11) 78.53% 87.44% 93.32% 69.70% 79.92% 86.42%

Table 2: Clustering evaluation of the test embeddings generated by different models (see Section 5.2 for metric acronyms)
Coarse-level Fine-level

Model H C V ARI AMI Intra CD Inter CCD H C V ARI AMI Intra CD Inter CCD
CE fine 0.471 0.435 0.452 0.106 0.366 7.137 4.957 0.791 0.765 0.777 0.078 0.242 0.318 1.190

Multi-task
(CE+Quadruplet) 0.517 0.479 0.497 0.131 0.417 6.942 5.023 0.792 0.771 0.781 0.088 0.265 0.308 1.153

happening because of the bi-level constraints (Equation (9)) imposed
on the quadruplet loss (Equation (10)). The rest of the experiments
are performed with the quadruplet loss model.

5.2. Clustering audio embeddings
To evaluate the effect of introducing hierarchy-aware loss on

learning better manifold and in turn producing more compact au-
dio embeddings, we cluster the embeddings of the test audio using
K-means clustering (K=183 for coarse-, K=4721 for fine-level clus-
tering). Table 2 shows different metrics evaluating the clustering
performed on the embeddings generated by baseline DNN with fine
level cross entropy and the multi-task algorithm with quadruplet loss.
The same parameter settings are used for K-means for both the algo-
rithms. The metrics are explained below (all of them implemented
in scikit-learn [27]):

• Homogeneity (H), Completeness (C) and V-measure (V) [28]:
If the true classes are known, then perfect homogeneity (1.0)
occurs when each cluster contains samples from a single
class. Perfect completeness ensures all members of a sin-
gle class to stay inside a single cluster. V-measure is the
harmonic mean of these two metrics.

• Adjusted Random Index (ARI): Given true labels and pre-
dicted cluster labels, ARI estimates a similarity between them
ignoring possible permutations [29]. It varies from 0 to 1, and
higher value is better.

• Adjusted Mutual Information (AMI): Mutual information be-
tween true and predicted cluster labels with a normalization
to account for chance. A higher value is preferable.

• Intra Cluster Distance (Intra CD): This does not require a
clustering algorithm, but only needs true class (or, cluster)
labels. It simply calculates the average distance between all
points inside a cluster, and takes average among all clusters.
Note that the embeddings are l2 normalized before computing
this (and Inter CCD) metric(s). A lower value is better.

• Inter Cluster Centroids Distance (Inter CCD): Average dis-
tance between all cluster centroids. It is also independent of
the clustering algorithm. A higher value is preferable.

We can see from Table 2 that the multi-task model outperforms
the baseline DNN in all metrics at coarse level, and all except one
metric (inter CCD) at fine label. The lower value of inter CCD at fine
level might be coming from the quadruplet constraint as mentioned
in Equation (9). The model learns to separate the fine level clusters,
but not too much because it also tries to keep them under the parent
coarse level cluster.

Table 3: Classification accuracies for AED on Greatest Hits dataset
Coarse-level Fine-level

Model Top 1 Top 3 Top 10 Top 1 Top 3 Top 10
Rand-init 64.89% 89.10% 98.64% 59.47% 85.19% 97.45%

Pre-trained 74.86% 92.93% 99.20% 69.04% 90.29% 98.49%

5.3. Transfer learning
To measure the transfer ability [30] of the model, we evaluate

its performance on the Greatest Hits dataset [31]. It contains audio
visual data of different actions (hit, scratch and other) performed on
different objects (e.g., dirt, glass, leaf etc.), and also their reactions
(e.g., deform, scatter etc.). We utilize the audio part of the dataset,
and all 17 objects and 2 actions (hit and scratch) serve as class and
subclass respectively. We do not use reaction because a bi-level hi-
erarchy is more well aligned with the scope of this paper. Following
the notations introduced in Section 2.1, an object creates a coarse
class, and object and action together create a fine class. So, we gen-
erate 17 coarse and 34 fine classes. A random (80%,10%,10%) data
split has been performed to produce disjoint train, validation, and test
sets. Table 3 compares the test performances of a ResNet-18 trained
from random initialization (referred as Rand-init in the table), and
from our quadruplet based pre-trained multi-task model. For Top 1,
we get around 10% absolute improvement at both coarse and fine
levels.

6. CONCLUSION AND FUTURE DIRECTIONS

The paper dealt with a bi-level hierarchical audio event detection
task. We introduced hierarchy-aware loss functions that learn from
the tree structured label ontology for achieving better classification
performance at all levels and to produce more distinctive audio em-
beddings. A multi-task learning framework was built with cross en-
tropy loss and the hierarchy-aware loss . Two different hierarchy-
aware loss functions were employed. First, a modified triplet loss
with a probabilistic multi-level batch balancing strategy. Second,
quadruplet learning suitable for labels having bi-level tree structure.
The classification and clustering experiments showed the efficacy of
the employed method. The evaluation on the Greatest Hits dataset
showed the model’s ability to transfer to a different domain.

An obvious extension of the work would be to apply the em-
ployed methods in AED tasks having deeper label structures. Un-
supervised learning of hierarchical audio events and their mixtures
might also be an interesting problem to attack in the future due to
the availability of large amounts unlabeled audio events data.
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