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ABSTRACT
The types of sound events that occur in a situation are limited,
and some sound events are likely to co-occur; for instance,
“dishes” and “glass jingling.” In this paper, we propose a
technique of sound event detection utilizing graph Laplacian
regularization taking the sound event co-occurrence into ac-
count. In the proposed method, sound event occurrences are
represented as a graph whose nodes indicate the frequency of
event occurrence and whose edges indicate the co-occurrence
of sound events. This graph representation is then utilized
for sound event modeling, which is optimized under an ob-
jective function with a regularization term considering the
graph structure. Experimental results obtained using TUT
Sound Events 2016 development, 2017 development, and
TUT Acoustic Scenes 2016 development indicate that the
proposed method improves the detection performance of
sound events by 7.9 percentage points compared to that of
the conventional CNN-BiGRU-based method in terms of the
segment-based F1-score. Moreover, the results show that the
proposed method can detect co-occurring sound events more
accurately than the conventional method.

Index Terms— Sound event detection, graph Laplacian
regularization, sound event co-occurrence, convolutional re-
current neural network, acoustic scene

1. INTRODUCTION
Sound event detection (SED), in which the onsets and off-
sets of sound events are detected and the types of sounds are
identified [1], has significant potential for use in many ap-
plications such as monitoring elderly people or infants [2, 3],
automatic surveillance [4–6], and media retrieval [7].

SED typically falls into two categories: monophonic and
polyphonic SED. In monophonic SED, it is assumed that mul-
tiple sound events do not occur simultaneously; thus, a mono-
phonic SED system only detects at most one sound event in
each time section. However, in a real-life situation, since
multiple sound events tend to overlap in time, a monophonic
SED system has limited performance in a real-life environ-
ment. To overcome this limitation, many polyphonic SED
systems, which can detect multiple overlapping sound events,
have been developed.

One approach to polyphonic SED is to use non-negative
matrix factorization (NMF) [8,9]. In the SED approach based

on NMF, a polyphonic sound is decomposed into a product
of a basis and activation matrices, where each basis vector
and activation vector respectively indicate a single sound
event and the active duration of the corresponding sound
event. SED systems based on neural networks have also been
developed [10–13]. For instance, a convolutional neural net-
work (CNN) is widely used for SED [10]. More recently,
many methods using a recurrent neural network (RNN) or
convolutional recurrent neural network (CRNN), which can
capture temporal information of sound events, have been de-
veloped [11–13]. These methods enable successful analysis
of overlapping sound events with reasonable performance.
However, when the number of types of sound events to be
analyzed increases, these approaches require a large training
dataset.

On the other hand, as shown in Fig. 1, the number of
types of sound events occurring in a single situation (acoustic
scene) is limited and some sound events co-occur. For in-
stance, the sound events “dishes” and “glass jingling” tend to
co-occur, and “car” and “brakes squeaking” are also likely to
co-occur. By considering this in the model training of sound
events, we expect to be able to model sound events efficiently
and effectively with limited sound data [14, 15]. However,
conventional methods cannot be integrated into the state-of-
the-art neural network-based method. Thus, in this paper, we
propose an SED approach based on a neural network that con-
siders the co-occurrence of sound events in each sound clip.
To consider the co-occurrence of sound events, we introduce
graph Laplacian regularization into the objective function of
a neural network.

The rest of this paper is organized as follows. In sec-
tion 2, a conventional SED approach based on a CRNN is
introduced. In section 3, the proposed approach to SED, in
which the co-occurrence of sound events can be considered,
is discussed. In section 4, we report experiments conducted
to evaluate the performance of SED by the proposed and con-
ventional methods, and in section 5, we summarized and con-
clude this paper.

2. CONVENTIONAL SOUND EVENT DETECTION
BASED ON RECURRENT NEURAL NETWORKS

In this section, we review conventional SED approaches
based on neural networks. For polyphonic SED, CNN archi-
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Fig. 1. Histogram of sound event instances for each acoustic scene
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Fig. 2. Concept of graph representation of
sound event occurrences

tectures are often used [10]. In CNN-based SED, the time-
frequency representation of the acoustic feature V ∈ RD×T

is fed to a convolutional layer, where D and T are the dimen-
sion of the acoustic feature and the number of time frames
of the input feature, respectively. This layer convolutes the
input feature map with two-dimensional filters; then, max
pooling is conducted to reduce the dimension of the feature
map. The CNN architecture allows robust feature extraction
against time and frequency shifts, which often occur in SED.

To model time correlations explicitly, an RNN has been
applied to SED in some works [11–13]. In particular, it has
been reported that neural networks combining a CNN and
bidirectional gated recurrent unit (BiGRU) successfully de-
tected sound events. In the CNN-BiGRU-based approaches,
the acoustic feature V is also fed to the convolutional layer.
The output of the convolutional layer X ∈ RD′×T×C is
then concatenated as Xconcat = (x1,x2, . . .xt, . . . ,xT ) ∈
R(D′·C)×T , and then Xconcat is fed to the BiGRU layer,
where C is the number of filters of the convolution layer. In
the BiGRU layer, the output vector ht is calculated using the
following equations:

gf
t = σ(Wf

gxt +Uf
ght−1 + bf

g ), (1)

rft = σ(Wf
rxt +Uf

rht−1 + bf
r ), (2)

hf
t = (1− gf

t )⊙ ht−1

+ gf
t ⊙ tanh(Wf

hxt +Uf
h(r

f
hht−1) + bf

h), (3)

gb
t = σ(Wb

gxt +Ub
ght+1 + bb

g), (4)

rbt = σ(Wb
rxt +Ub

rht+1 + bb
r), (5)

hb
t = (1− gb

t)⊙ ht+1

+ gb
t ⊙ tanh(Wb

hxt +Ub
h(r

b
hht+1) + bb

h), (6)

ht =

[
hf
t

hb
t

]
, (7)

where superscripts f and b indicate forward and backward
networks, respectively. Subscripts t, g, and r indicate the time
index, update gate, and reset gate, respectively. g, r, ⊙, and
σ indicate the update gate vector, reset gate vector, Hadamard
product, and sigmoid function, respectively. W, U, and b
are parameter matrices and a bias vector. The BiGRU layer is
followed by a fully connected layer, which is the output layer
of the network. The final output of the network is calculated
as

yt = σ(ht). (8)

The CNN-BiGRU network is optimized under the follow-
ing sigmoid cross-entropy objective function E(Θ) using the
backpropagation through time (BPTT):

E(Θ) = −
T∑

t=1

{
zt log(yt) + (1− zt) log(1− yt)

}
, (9)

where zt is a target vector of the output that indicates whether
sound events are active or nonactive in time frame t.

3. SOUND EVENT DETECTION WITH EVENT-
CO-OCCURRENCE-BASED REGULARIZATION

3.1. Motivation

Conventional CRNN-based approaches achieve reasonable
performances in SED when a sufficient amount of train-
ing sound data is prepared. However, since recording and
annotating environmental sounds are very time-consuming
tasks [1], in many situations, the conventional method tends
to exhibit degradation in the event detection performance.
To overcome this problem, we propose a new method using
graph Laplacian regularization for SED.
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As shown in Fig. 1, the number of types of sound events
occurring in a single situation (acoustic scene) is limited and
some sound events co-occur. For instance, the sound events
“dishes” and “glass jingling” tend to co-occur, and “car” and
“brakes squeaking” are also likely to co-occur. By consider-
ing the sound event co-occurrence in the model parameter es-
timation of a neural network, it is expected that sound events
can be efficiently and effectively modeled with limited sound
data.

3.2. Sound event detection using graph Laplacian regu-
larization

To consider the co-occurrence of sound events, we introduce
the graph representation of sound event occurrences and a
graph-based regularization technique for the modeling of
sound events.

Suppose that a graph representation G of a sound event
occurrence has nodes v ∈ RM and an adjacency matrix A ∈
RM×M , as shown in Fig. 2. Here, M is the number of types
of sound events. The weights of the nodes on the graph are
the frequencies of sound event occurrences, and the weights
of the edges indicate how often two sound events co-occur.
Then, the graph Laplacian matrix L [16] is defined as

L = ∆−A, (10)

where ∆ is a diagonal, so-called degree matrix, whose diag-
onal elements are defined as [δ]ii =

∑
j Ai,j .

If two sound events tend to co-occur, when the two nodes
corresponding to the sound events are connected with a large
weight, the frequency of the sound event occurrence should
have a small difference. Thus, adding the following penalty
term to the cost function of the optimization problem enables
us to learn a sound event model in which we can consider the
sound event co-occurrence [17, 18].

1

2

M∑
i,j=0

Ai,j∥vi − vj∥2

=

M∑
i=0

vivi∆i,i −
M∑

i,j=0

vivjAi,j

= Tr(vT∆v)− Tr(vTAv) = Tr(vTLv) (11)

By integrating Eq. (11) into Eq. (9), we obtain the following
objective function:

E(Θ) = −
T∑

t=1

{
zt log(yt) + (1− zt) log(1− yt)

}
+ αTr(vTLv). (12)

By approximating the frequencies of sound event occurrences

Table 1. Experimental conditions

Acoustic feature Log mel-band energy
# dims. of acoustic feature 64
Frame length / shift 40 ms / 20 ms
Length of sequence 500 (10 s)
Regularization weight α 1.0× 10−5

Network structure of CNN-BiGRU 3 conv. & 1 BiGRU layers
Filter size in CNN layers 3 × 3
Pooling in CNN layers 3 × 1 max pooling
Activation function ReLU
# channels of CNN layers 128, 128, 128
# GRU units 32
# epochs for training 150
Optimizer Adam
Thresholding Adaptive thresholding [19]

v by
∑

t yt, the objective function is finally given as

E(Θ) = −
T∑

t=1

{
zt log(yt) + (1− zt) log(1− yt)

}
+ αTr

{( T∑
t=1

yt

)T
L
( T∑
t=1

yt

)}
, (13)

where α is the regularization weight. Thus, we can de-
tect appropriate sound events yt while considering the co-
occurrence of sound events, even when limited training data
can be used for model training.

4. EXPERIMENTS

4.1. Experimental conditions

To evaluate the performance of the proposed method, we con-
ducted experiments with conventional neural-network-based
methods and the proposed method. For the experiments, we
constructed a sound event dataset composed of part of the
TUT Sound Events 2016 development, 2017 development,
and TUT Acoustic Scenes 2016 development [20, 21]. From
the three datasets, we extracted sound clips including four
acoustic scenes, home, residential area (TUT Sound Events
2016), city center (TUT Sound Events 2017), and office (TUT
Acoustic Scenes 2016), with a total duration of 192 min. of
audio. The experimental data include the 25 types of sound
events listed in Fig. 1. In this regard, because the original
TUT Acoustic Scenes 2016 development datasets do not have
sound event annotations for the sound clips recorded in the
office environment, we annotated them using the same pro-
tocol as in [20] and [21]. The experiments were conducted
using the four-fold cross-validation setup introduced in the
TUT Acoustic Scenes 2016 development and 2017 develop-
ment datasets.

As the input of each system, the 64-dimensional log
mel-band energy, which was calculated for each 40 ms time
frame with 50% overlap, was used. The adjacency matrix
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Table 2. Detection performance of sound events in segment-based metrics

Method Fold 1 Fold 2 Fold 3 Fold 4 Average
F1 score Error rate F1-score Error rate F1-score Error rate F1-score Error rate F1-score Error rate

CNN 48.67% 0.708 31.36% 0.829 33.11% 0.813 23.55% 0.899 34.17% 0.812
CNN-GRU 51.00% 0.672 36.64% 0.795 35.95% 0.797 34.70% 0.864 39.57% 0.782
CNN-BiGRU 53.10% 0.652 35.10% 0.807 38.34% 0.769 38.42% 0.814 41.24% 0.761
CNN-BiGRU w/ GLR 55.59% 0.631 48.28% 0.742 50.39% 0.678 42.39% 0.820 49.16% 0.718

Brakes
squeaking

City center

0 40 80 120 160 200 240
(Sec.)

People
walking

People
talking

Car

Annotation CNN CNN-BiGRU CNN-BiGRU w/ GLR

Fig. 3. Annotations and event detection results of sounds
recorded in city center. Only sound events occurring in the
annotations are described.

A was calculated by counting the number of co-occurring
sound events in each sound clip over the training dataset and
normalizing the result in the range from 0 to 1. After ob-
taining the output yt, active sound events were predicted by
thresholding using an adaptive thresholding technique [19].
The detection performance was evaluated by the F1-score and
error rate in the segment-based metrics [22], in which the seg-
ment length is set to 40 ms. The other recording conditions
and experimental conditions are listed in Table 1.

4.2. Experimental results

Table 2 shows the F1-scores and error rates for CNN, CNN-
BiGRU, and CNN-BiGRU with graph Laplacian regular-
ization (GLR). The results show that the proposed method
moderately improves the SED performance in terms of both
the F1-score and error rate. In this experiment using the
TUT Sound Events and Acoustic Scenes datasets, the pro-
posed method improves the average SED performance by 7.9
percentage points from that of conventional CNN-BiGRU in
terms of the F1-score.

To examine the detection results in more detail, we il-
lustrate examples of annotations and the predicted results of
sound events in Figs. 3 and 4. The results also show that the
proposed method detects sound events more accurately than
the conventional methods. Moreover, the results show that the

Wind
blowing

0 40 80 120 160 200 240
(Sec.)

Bird
singing

People
talking

Car

Residential area

Annotation CNN CNN-BiGRU CNN-BiGRU w/ GLR

Fig. 4. Annotations and event detection results of sounds
recorded in residential area. Only sound events occurring in
the annotations are described.

proposed method can detect co-occurring sound events more
accurately than the conventional methods. For instance, the
sound events “car” and “brakes squeaking” can be detected
by adopting graph Laplacian regularization, whereas the con-
ventional methods do not detect “brakes squeaking” events.
Thus, we conclude that graph Laplacian regularization based
on the co-occurrence of sound events is a promising technique
for SED.

5. CONCLUSION

In this paper, we proposed the neural-network-based SED
with graph Laplacian regularization based on the co-occurrence
of sound events. Unlike conventional CNN or CNN-BiGRU-
based SED methods, the proposed method can detect sound
events with prior information on the co-occurrence of sound
events. This enables sound events to be modeled effectively
and efficiently even if there are many types of sound events
to model and limited training data. The experimental re-
sults obtained using the TUT Sound Events 2016, 2017, and
TUT Acoustic Scenes 2016 datasets show that the proposed
method improves the SED performance by 7.9 percentage
points in terms of the segment-based F1-score. The experi-
mental results also show that the proposed method can detect
sound events that tend to co-occur, such as sound events
“car” and “brakes squeaking”, more accurately than the con-
ventional methods.
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