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ABSTRACT

To deliver on the potential outcome-based teaching and learning
holds for engineering education, it is important for engineering
courses to provide students with different types of deliberate prac-
tice opportunities that align to the program’s learning outcomes.
Working from these requirements, we increased the design and mea-
surement intentionality of a digital signal processing (DSP) course.
To align the course’s learning outcomes more constructively with
its assessment measures, we automated the process of classifying
DSP questions according to learning outcomes by introducing a
model that integrates topic modeling and machine learning. In this
work, we explored the effect of pre-processing procedures in terms
of stopword selection and word co-occurrence redundancy issue
in question classification inferences. In this work, we proposed a
customized variant of the Word Network Topic Model, q-WNTM,
which is able to use its pre-classified DSP questions to reliably
classify new questions according to the course’s learning outcomes.

Index Terms— Learning outcomes, assessment, topic model-
ing, extreme learning machine

1. INTRODUCTION

To comply with the Accreditation Board for Engineering and Tech-
nology’s (ABET) accreditation criteria and prepare students for the
workforce, all engineering programs must ensure students complete
courses that collectively develop eleven categories of learning out-
comes [1]. To help students demonstrate these outcomes by the end
of a program, courses implement learning activities that rely on re-
membering concepts, applying existing knowledge to tackle prob-
lems, and generating tailored solutions to real-life scenarios [2]. As a
required course in many electrical engineering programs, the design
of digital signal processing (DSP) courses is crucial for achieving
compliance with ABET’s educational standards. The best practices
of outcome-based teaching and learning suggest that course designs
should identify the learning outcomes and the assessments that mea-
sure those learning outcomes before designing the course’s learn-
ing activities [3]. For DSP courses, learning activities can include
building circuits [4], Matlab programming [5] and laboratory ex-
periments [6] which can be implemented to fulfill a set of learning
outcomes. For a host of historical, structural, and policy reasons,
the design of DSP courses often deviates from the best practices.
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Many courses were originally designed decades ago and incremen-
tally updated with new content and assessment items. This slow evo-
lution often translates to the measurement of student outcomes being
grafted onto a course that was originally designed for its coverage of
content [7].

While aligning deliberate practice opportunities to assessments
is crucial, not all assessments and learning measures are equal [8].
Bloom’s Taxonomy serves as a popular representation of how learn-
ing can be divided into categories that rely on the same domain infor-
mation but different cognitive processes [9, 10, 11]. Using the con-
volution operation as an example, students can be asked to explain,
calculate or create something as part of a deeper analysis. Integrat-
ing Bloom’s Taxonomy into ABET’s accreditation criteria creates
a space that maps the assessment items to the learning outcomes.
As a thought experiment, in this work, we focused on the space that
deals with knowledge facts (“K”), applying a learned concept (“A”),
and transferring the learnt concept to another domain (“T”). This
space is obtained by merging the categories in Bloom’s Taxonomy,
for which the detailed explanation can be found in Section 2.2. Map-
ping every assessment item into our hypothetical learning outcome
space would be difficult in terms of reliability and time invested. In
our work, we focused on “Is it possible to reliably classify if an as-
sessment item aligns to a particular learning outcome?” Hereafter,
we use the word “question” as a proxy for assessment item.

Rule-based approaches have been adopted for question clas-
sification by combining parts-of-speech tagging, identifying verbs
associated with Bloom’s Taxonomy and recognizing the presence
of particular punctuation marks to create features as inputs to ma-
chine learning algorithms [13, 14]. However, for a new or updated
set of questions, it is observed that some questions fail to activate
any of these rules [15]. To address the data dependency issue,
term frequency-inverse document frequency (TF-IDF) is employed,
which identifies the relevance of the words themselves by assigning
weightages to each word in a question based on a representative cor-
pus [16]. However, identical weightages assigned to different words
may cause misinterpretation errors during classification according to
learning outcomes. As a result, TF-IDF achieves high classification
for a handpicked set of questions [12] and its performance is limited
for imbalanced set of questions from a variety of sources.

In response to the limitations of these approaches, our previ-
ous work on automatic question classification employed text-based
techniques (TF-IDF and latent Dirichlet allocation (LDA) [17]) to
analyze the presence of words and features in a question followed
by machine learning algorithms such as extreme learning machine
(ELM) [18] to classify them. We hypothesize that the reasons for
LDA to achieve limited performance are: 1) stopwords were not re-
moved, hence topics were comprised of high-frequency words which
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led to uncertainty in identifying the accurate label, and 2) the spar-
sity of the document-level to word co-occurrences resulting from the
short questions interfered with LDA [12]. The occurrences of words
in short texts do not contribute as much to detecting word relation-
ships when compared with long documents [19].

The inability of LDA to adequately classify short texts such as
messages and tweets [20] prompted the development of the word
network topic model (WNTM). WNTM models the distribution over
topics for each word rather than directly learning the topics for each
document as in LDA [21]. The semantic density of data is enriched
and the global contextual information is made available through the
word-word space [21]. Questions belong to the category of short
texts, similar to tweets which were limited to 140 characters long,
privileging WNTM over LDA for question classification [20].

WNTM classifies short texts by sieving out the content words
in a document. Thus, WNTM cannot be directly applied to question
classification for two reasons: 1) pre-processing stopword removal
is different, and 2) redundancy of content-agnostic versus technical
word combinations is not considered. With respect to the former
issue, in traditional document classification, stopwords (question
words, prepositions, articles, conjunctions, action verbs etc. [22])
are generally defined as high-frequency words which do not con-
tribute to a document’s subject matter. However, when classifying
a question according to its learning outcome, common stopwords
become key to determining the proper category. Thus, in this work,
a list of stopwords which functionally did not contribute to classi-
fying the questions is generated. With respect to the latter issue, to
identify the learning outcome of a question, if we only consider the
content-agnostic words such as “what”, “explain”, we may not be
able to identify the learning outcome without knowing the context
reflected by the technical words and other content-agnostic words
that surround it. Since we are not performing document classifica-
tion based on content, but rather question classification according
to learning outcomes, we sought to observe the relationship among
content-agnostic words, as well as, between content-agnostic and
technical words that correspond to the categories of learning out-
comes. These two issues prompted us to further expand WNTM
by customizing the pre-processing procedures to better fit our use
case. In line with the above, we propose “q-WNTM” algorithm, a
tailor-made WNTM for question classification.

By addressing limitations observed in prior work which include
the lack of consideration of appropriate stopwords and word co-
occurrence redundancy, we sought to provide a more reliable tool
for DSP instructors to use when linking questions to their courses’
learning outcomes. We picture the intended use case as follows: Say
that an actual “A” or “T”-type question is misclassified as “K”-
type. This misestimates a course’s prioritization of memorization.
The converse implies that students who merely memorized material
demonstrated more outcomes than they should have. By focusing on
word context, our model avoids such misinterpretations of student
abilities in terms of course evaluation by minimizing misclassifica-
tion. The tool-assisted course improvement process would lead to
a more reliable matching between questions and learning outcomes.
Such a system also lends itself to the generation of custom question
sets students could use as deliberate practice opportunities. With this
vision in mind, we have prioritized our model to minimize the num-
ber of falsely identified categories compared to existing techniques.

2. METHODS FOR QUESTION CLASSIFICATION

In this section, we describe our question dataset, the taxonomy we
have adopted to categorize the questions, and our proposed tech-

Fig. 1. Frequency distribution of length of DSP questions.

nique for classifying questions according to learning outcomes.

2.1. Dataset of questions

The corpus of 150 DSP questions underlaying this work aggregates
questions published in well-known textbooks [23, 24, 25], obtained
from online question banks and generated by an instructor of an un-
dergraduate DSP course. The mean length of our questions was 16.2
words (SD = 8.01) or 88.54 characters (SD = 44.20). The frequency
distribution of question length in terms of the number of words is
depicted in Fig. 1. The prevalence of short questions confirms the
need to forgo LDA and instead apply WNTM.

A subject matter expert manually classified all of the train-
ing questions that were passed into the extreme learning machine
(ELM). To obtain a ground truth measure when evaluating the classi-
fication performance of the testing set, the same instructor manually
classified each of the test questions. Although the questions covered
a range of DSP topics such as discrete-time signals, discrete-time
Fourier transform and z-transform, classification was done without
any analysis of the content. The classification was conducted based
solely on the learning outcome the instructor intended to measure
with each question.

2.2. Customized set of learning outcomes

As a proof of concept, we concerned ourselves with ABET’s
content-based learning outcomes. We collapsed all of these out-
comes into a single dimension. We then used a reduced version
of Bloom’s Revised Taxonomy to stratify the content related out-
comes. The taxonomy starts with the recollection of information at
the lowest level, ascends to the application of knowledge, and peaks
with creative outcomes [26]. The reduction to Bloom’s Revised
Taxonomy reflects the philosophy of the DSP course instructor who
viewed the different levels of reasoning about course content as
pertaining to knowledge, application and transfer. The framework of
cognitive levels we adopted is depicted in Fig. 2. We combined the
lowest two levels in Bloom’s Revised Taxonomy into “Knowledge”
(“K”), retained the subsequent level as “Application” (“A”) and
combined the top three levels into “Transfer” (“T”). These three
categories form the basis of our analysis and are consistent with
ABET’s engineering education accreditation criteria.

To illustrate the classification process with examples from our
DSP question dataset, Fig. 2 shows an example question for each of
the learning outcomes. Generally, “K”-type questions require stu-
dents to recall and understand DSP facts and information. “A”-type
questions require students to apply their DSP knowledge to solve a
closely related problem. Lastly, “T”-type questions require students
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Fig. 2. Our custom learning outcomes framework.

to transfer their understanding of DSP principles to analyze, eval-
uate, and generate real-life situations not presented in the learning
materials.

2.3. Proposed q-WNTM model

Our proposed model includes a three-step pre-processing approach
and a question classification technique.

2.3.1. Text pre-processing

We began with basic data cleaning. Since we only focused on the
questions’ text, we removed symbols, diagrams, equations, numbers
and punctuation marks. We ensured all remaining characters were
in lower case before removing stopwords. In line with our use-case
to preserve the essence of a question, we removed only four words
“the”, “and”, “a”, “an”. These words do not affect a question’s
context. Apart from these four words, we created a separate list
of content-agnostic words that included all other general stopwords
such as “how”, “state”, “why” etc. The corpus’s remaining words
such as “DFT”, “filter”, “FIR” are considered technical words.
With the above procedure, there were a total of 109 unique content-
agnostic words and 437 unique technical words in our dataset. Seg-
regating content-agnostic and technical words from each other en-
sures that our proposed question classification technique ignores the
relationships between the presence of technical words and provides
each question’s contextual information.

2.3.2. Question classification technique

Our proposed model employs WNTM [21] to generate the topic
probabilities for each question. After generating the weighted word
co-occurrence network, the adjacency lists for every unique word in
the corpus are constructed. Unlike the conventional WNTM algo-
rithm, for every technical word present in the corpus, the other co-
occurring technical words in the corresponding adjacency lists are
removed. This removal ensures that there will only be combinations
of 1) content-agnostic with content-agnostic and 2) content-agnostic
with technical words (and vice-versa). These resulting lists allow us
to perform context-based instead of content-based classification.

After forming the adjacency lists for every unique word present
in the corpus, we treat the lists as a new set of documents and apply
the standard LDA Gibbs sampling to iterate through the word-topic
allocation counts and topic-adjacency list allocation counts [27].
Each topic t generated in this model is a multinomial distribution
φt over the vocabulary of words, with a symmetric Dirichlet prior
β. Similarly, each new adjacency list a generated by our model
is a multinomial distribution θa over the topics, with a symmetric

Fig. 3. Illustration of model implementation.

Dirichlet prior α. After obtaining the topic probabilities for each
adjacency list corresponding to the global set of co-occurrence re-
lationships for each word, the topic probabilities for each original
question based on every individual word wj are inferred as

P (t|q) =
∑
wj

P (t|wj)P (wj |q), (1)

where P (t|q) refers to the probability of every topic t in each ques-
tion q, P (t|wj) refers to the probability of every topic t in each adja-
cency list belonging to each wordwj (θa), and P (wj |q) refers to the
frequency of each word in the original question divided by the total
number of words in that question. The vector of N topic probabili-
ties for each question forms the input to the ELM which eventually
labels these vectors to the learning outcomes space.

2.4. Implementation

To highlight the above procedure, Fig. 3 illustrates the steps taken
to convert a sample set of two questions into adjacency lists. The
words presented in boldface in Step 1 refer to each question’s
pre-defined set of content-agnostic words. After constructing the
weighted network of word co-occurrences in Step 2, the adjacent
words co-occurring with each word are identified. The string of
adjacent words for the technical word “frequency” is shown in Step
3. Since we wanted to determine the difference in topic probabilities
between including and excluding technical words in the adjacency
list of a technical word, the other technical words in the adjacency
list of “frequency” are removed (struck out).

To illustrate the impact of our choice of stopwords, given a ques-
tion “what does the frequency response of a system comprise of”,
the phrase “what does” serves as a signifier of its category “K”. If
standard stopword removal is applied, it will appear as “frequency
response system”, and the learning outcome becomes difficult to
identify. Conversely, our choice of stopword removal transforms the
question into “what does frequency response of system comprise of”
which does not limit the ability of the algorithm to categorize it as
a “K”-type question. Various examples from our dataset can also
be used to illustrate the importance of context. With reference to
content-agnostic words, “explain what” signifies a different cate-
gory than “explain why”. With respect to content-agnostic and tech-
nical words, “find DTFT” differs from “describe DTFT”. However,
when comparing “phase response” and “magnitude response”, the
significance of co-occurring technical words is of less importance
when determining the learning outcome expressed by a question.

3. RESULTS AND DISCUSSION

The objective of our experiments is to show how our model can be
useful for DSP instructors to classify questions with minimal false
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Table 1. Comparison of F1 scores.
Method K A T Average s.d.

TF-IDF [16] 0.857 0.513 0.333 0.583 0.218
LDA [17] 0.444 0.941 0.737 0.707 0.204

WNTM [21] 0.545 0.800 0.848 0.744 0.133
q-WNTM 0.700 0.903 0.923 0.848 0.101

“s.d.” refers to the standard deviation among the three categories.

classifications, and with the intention of providing the right set of
practice opportunities to students. To achieve this, we explored the
impact of word combination redundancy. We compared our pro-
posed q-WNTM model with TF-IDF, LDA and WNTM.

3.1. Hyperparameters selection

The hyperparameters that require optimal initialization for topic
models are the number of topics (N ), prior for document/adjacency
list to topic probabilities (α), and prior for topic to word probabili-
ties (β). An empirically determined N = 10, α = 0.1 and β = 0.01
were selected as the optimal parameters for our dataset. We con-
fined the number of Gibbs sampling iterations to 2000. For TF-IDF,
the traditional bag-of-words approach results in each question be-
ing represented as a vector of weightages for the entire vocabulary
including irrelevant zeroes and insignificant weightages. Hence,
our strategy was to sort the word weightages for each question in
ascending order and choose the 10 largest weightages per question
based on the mean number of significant weightages. 105 questions
(70%) were randomly selected to train the extreme learning machine
(ELM). The remaining 45 questions (30%) were used to test the
model. A 10-fold cross validation was performed on the training
dataset to initialize ELM optimally. A grid search performed for the
number of hidden nodes and the activation function showed that 27
hidden nodes using the sigmoid activation function yielded the best
representation for our dataset.

3.2. Comparison analysis

We compared F1 scores to evaluate the performance of question clas-
sification using the four techniques. Given a model, we calculated an
individual F1 score for each category and the model’s macro-average
F1 score which aggregates the mean of the model’s precision and re-
call values and thereafter calculating the harmonic mean between
them. Table 1 shows the F1 scores for each algorithm. Apart from
comparing the relative F1 scores, Table 2 shows the confusion ma-
trices. The purpose of calculating F1 scores is to differentiate the
extent to which each model falsely identifies the true category of a
question, thereby hindering the appropriate cognitive level of prac-
tice opportunity provided to a student.

Our results suggest that our proposed q-WNTM model links as-
sessment questions to learning outcomes more accurately than ex-
isting models. TF-IDF achieves the highest macro-average F1 score
with the lowest standard deviation among the 3 categories as seen
in Table 1. From Table 2, it can be seen that “K”-type questions
are identified best, indicating that TF-IDF is biased towards length,
while the other two categories are misinterpreted more often due to
the lack of consideration of semantic context spaces. LDA achieves
the lowest F1 score for “K”-type questions due to severe sparsity in
terms of question length to topic allocation. It classifies the other
two categories of question types more accurately, but not to a large
extent, which underscores the limitations of using LDA for short
texts.

Table 2. Confusion matrices for each method.
TF-IDF LDA
Predicted Predicted

True K A T True K A T
K 9 0 0 K 4 0 5
A 1 10 6 A 1 16 0
T 2 12 5 T 4 1 14

WNTM q-WNTM
Predicted Predicted

True K A T True K A T
K 6 3 0 K 7 0 2
A 3 14 0 A 3 14 0
T 4 1 14 T 1 0 18

WNTM returns a higher macro-average F1 score with a lower
standard deviation than the previously implemented methods as seen
in Table 1. This suggests the importance of using features derived
from word level co-occurrences when conducting short text topic
modeling. However, the results exhibit significant level of error
which limits the performance of directly applying WNTM for ques-
tion classification.

The solution to reducing this error lies in our approach to elim-
inating redundant word co-occurrences which forms a more diag-
nostic abstraction of the original question. The impact of excluding
co-occurring technical words yields a high macro-average F1 score
of 0.848 and a low standard deviation of 0.101 with q-WNTM as
shown in Table 1. The relative proportion of word occurrence for
a question P (wj |q) is held constant because the words in the orig-
inal question are not deleted. However, the main difference is due
to the computation of P (t|wj) in the adjacency list for every tech-
nical word. If the co-occurring technical words were not excluded,
θa (topic probabilities) in the adjacency list for each of the 437 tech-
nical words would be much different based on the count of topics
during the Gibbs sampling iterations. Without any such removal,
the original WNTM yielded misinterpreted topic probabilities. As
seen in Table 2, almost all of the questions are correctly classified.
The results obtained with q-WNTM highlight that for this dataset,
the proposed stopwords list and the consideration of word combina-
tion redundancy is necessary for enhancing the question classifica-
tion performance.

4. CONCLUSION

To help instructors match their assessment questions to learning out-
comes, we constructed a classification model and compared it with
previously implemented methods. Our model augments the perfor-
mance of question classification beyond the previously described
work by addressing issues concerning the selection of stopwords and
considering redundant edges in the network of word co-occurrences.
Our work served as a tool and resource repository for constructively
aligning the assessment items found in a DSP course to its learning
outcomes. With more courses and more questions, our work could
lead to more deliberate practice opportunities, balance and measure-
ment consistency to assessments of learning.
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