
MULTI-ARMED BANDITS FOR HUMAN-MACHINE DECISION MAKING

Paul Reverdy

University of Arizona
Aerospace and Mechanical Engineering

Tucson, AZ 85719

Vaibhav Srivastava∗

Michigan State University
Electrical and Computer Engineering

East Lansing, MI 48824

ABSTRACT
Building an integrated human-machine decision-making sys-
tem requires developing effective interfaces between the
human and the machine. We develop such an interface by
studying the multi-armed bandit problem, a simple sequential
decision-making paradigm that can model a variety of tasks.
We construct Bayesian algorithms for the multi-armed ban-
dit problem, prove conditions under which these algorithms
achieve good performance, and empirically show that, with
appropriate priors, these algorithms effectively model human
choice behavior; the priors then form a principled interface
from human to machine. We take a signal processing perspec-
tive on the prior estimation problem and develop methods to
estimate the priors given human choice data.

Index Terms— Active inference, Bayesian inference,
multi-armed bandit, human decision making

1. INTRODUCTION

Inference, the process of reaching conclusions from data, lies
at the heart of many contemporary technologies, including
object recognition and fault detection among numerous oth-
ers. Often, such technologies are employed not directly for in-
ference but rather to infer some information (the type of a per-
ceived object, the presence of a fault, etc.) in order to take an
action (manipulate the perceived object, isolate and recover
from the fault, etc.). In this paper, we study the multi-armed
bandit (MAB) problem as a simple example of a decision-
making task where inference and action are closely linked.

Additionally, many inference problems are highly struc-
tured in the sense that only small amounts of data are required
to perform accurate inference; often this is due to the exis-
tence of a great deal of contextual information, such as the
types of objects or faults that the system is likely to encounter.
Providing this contextual information can greatly improve the
performance of the system, e.g., its convergence rates, it is of
great interest to develop methods to do so. Contextual in-
formation is often difficult to systematically extract, so many
deployed systems use human supervisors to provide the con-
textual information and to guide the automated system [1, 2].
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The performance of such human-machine systems could be
improved by rigorously studying the connections between hu-
man and machine decision making and thereby developing
effective interfaces between the human and the machine.

In this paper, we consider the MAB problem from the
viewpoint of both the human and the machine and develop the
Upper Credible Limit (UCL) algorithm, a Bayesian algorithm
that models the principal features of human choice behavior
in MAB problems while also achieving optimal performance
when employed with appropriate values of its input parame-
ters, principally the algorithm’s priors. These input parame-
ters then form a parsimonious quantitative interface between
human and machine, and we develop methods to estimate the
priors given human choice data. Significant portions of these
results have previously appeared in various publications, in-
cluding [3, 4, 5], and [6].

2. THE MULTI-ARMED BANDIT (MAB) PROBLEM

The multi-armed bandit (MAB) problem, introduced by Rob-
bins [7], is a sequential decision-making problem in which
a decision-making agent is presented with a set of N op-
tions (an option is also called an arm in analogy with the
lever of a slot machine). Each option i ∈ {1, . . . , N} has
an associated probability distribution pi whose mean mi is
unknown to the decision maker. At each sequential decision
time t ∈ {1, . . . , T} the agent picks arm it and receives re-
ward rt ∼ pit(r) drawn from the probability distribution as-
sociated with arm it. The agent’s objective is to pick arms
such that the expected value of the rewards received from the
T decisions is maximized:

max
{it}

J, J = E

[
T∑

t=1

rit

]
=

T∑
t=1

E [mit ] , (1)

where the latter expectation is over different realizations of
the sequence {it}.

Each choice of it is made sequentially, conditional on the
information available to the agent at time t. If the mean re-
wardsmi were known to the agent a priori, the optimal policy
would be trivial: set it = arg maximi for each t. However,
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since the mean rewards are not known, the agent must simul-
taneously seek to select arms for which the rewards are poorly
known (explore) and select arms that appear to have high re-
wards based on current information (exploit). The tension
between selecting arms with uncertain (but potentially high)
rewards and arms that appear to have high rewards is known
as the explore-exploit tradeoff, and is common to problems
in active learning and adaptive control. In the literature, the
rewards are often assumed to be Bernoulli and model, e.g.,
whether or not an individual will click on an ad on a website
[8], however other reward distributions have been considered.

2.1. Performance bounds for MAB problems

In the MAB literature, it is common to assume that the re-
ward distributions pi are stationary. Under this assumption,
a famous result due to Lai and Robbins [9] bounds the per-
formance of any algorithm solving the MAB problem. The
bound is typically stated in terms of regret, which is a mea-
sure of performance loss due to uncertainty. Defining mi∗ =
maximi and Rt = mi∗ − mit as the expected regret (con-
ditioned on it) at time t, the objective (1) can be rewritten as
minimizing the cumulative expected regret defined as

T∑
t=1

Rt = Tmi∗ −
T∑

t=1

mit =

N∑
i=1

∆iE
[
nTi
]
,

where nTi is the number of times arm i has been chosen up
to time T and ∆i = mi∗ − mi is the expected regret due
to choosing arm i instead of i∗. To minimize the cumulative
expected regret it suffices to minimize the number of times a
suboptimal arm i ∈ {1, . . . , N}\{i∗} is selected.

Lai and Robbins [9] showed that the expected number of
times a suboptimal arm is selected is at least logarithmic in
time, i.e.,

E
[
nTi
]
≥
(

1

D(pi||pi∗)
+ o(1)

)
log T (2)

for each i ∈ {1, . . . , N}\{i∗}, where o(1)→ 0 as T → +∞
andD(pi||pi∗) is the Kullback-Leibler divergence between pi
and pi∗ . This bound implies that the cumulative expected re-
gret must grow at least logarithmically with time. In the liter-
ature, algorithms that achieve cumulative expected regret that
is uniformly bounded by a logarithmic term with a constant
that is within a constant factor of (2) are said to achieve loga-
rithmic regret and considered to have optimal performance.

In the remainder of this paper, we focus on the case of
Gaussian rewards, i.e., where pi is Gaussian with mean mi

which is unknown to the decision maker and variance σ2
s,i,

which is known. If, in addition, the reward variance is uni-
form (i.e., σs,i = σs), then the constant 1/D(pi||pi∗) in (2)
reduces to 2σ2

s/∆
2
i .

2.2. Features of human decision-making behavior in
MAB problems

In [3], we identified five salient features of human decision-
making behavior in MAB problems. These features are likely
to be apparent in human decision-making behavior in other
problems as well so we repeat them here as follows.

1. Familiarity with the environment: Humans approach
problems with prior knowledge, which here is manifest
as prior knowledge about the mean reward mi associ-
ated with each arm i.

2. Ambiguity bonus: Wilson et al. [10] have shown that
human decision-making in MAB problems is based on
a linear combination of an estimate of the mean reward
mi and the uncertainty in that estimate.

3. Stochasticity: Human decision-making behavior is in-
herently noisy [11].

4. Finite-horizon effects: Both the level of decision noise
and the ambiguity bonus effect are sensitive to the time
horizon T [10].

5. Environmental structure effects: Humans tend to learn
the structure of the tasks they perform, i.e., they learn
the correlation structure among the rewards from differ-
ent arms, and use this structural information to improve
their decisions [12].

3. UCL: A BAYESIAN MAB ALGORITHM

In [3], we developed an algorithm called the Upper Credi-
ble Limit (UCL) algorithm for solving MAB problems with
Gaussian rewards. UCL is a Bayesian algorithm inspired by
the Bayes-UCB algorithm developed by Kauffman et al. [13]
for the case of Bernoulli rewards. Both algorithms are based
on the optimism in the face of uncertainty heuristic [8], which
suggests that algorithms can achieve good performance by
formulating the set of possible environments (i.e., reward dis-
tributions) that are consistent with observed data, then acting
as if the true environment were a sufficiently favorable one in
that set.

UCL maintains a belief state about the rewards using
Bayesian inference. Let m ∈ RN be the vector of unknown
mean rewards. We let the prior on m be the Gaussian dis-
tribution N (µ0,Σ0), where µ0 ∈ RN and Σ0 ∈ RN×N

is a positive-definite matrix. Since the reward distributions
are assumed to be Gaussian with known variance σ2

s,i, the
Gaussian prior is conjugate to the observation likelihood and
the belief state (µt,Σt) updates in closed form according to
well-known linear equations [14]. The marginal distribution
for the ith component of the belief state is then the Gaussian
distribution N (µt

i, σ
t
i), where µt

i = (µt)i and σt
i =

√
(Σt)ii.
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3.1. The deterministic UCL algorithm

At each decision time t ∈ {1, . . . , T}, the deterministic UCL
algorithm selects the arm that maximizes the upper limit of
the (1 − 1/Kt) credible interval, i.e., it selects an arm it =
arg maxiQ

t
i, where

Qt
i = µt

i + σt
iΦ
−1(1− 1/Kt),

Φ−1 : (0, 1) → R is the inverse cdf of the standard Gaussian
random variable, and K ∈ R>0 is a tunable parameter.

3.2. The stochastic UCL algorithm

As noted as feature 3 in Section 2.2, human decision-making
behavior in MAB problems is inherently noisy. Therefore, in
[3], we considered an extension of the deterministic UCL al-
gorithm which models the decision noise using the Boltzmann
selection mechanism, i.e., sets the probability pti of picking
arm i at time t equal to

pti =
exp(Qt

i/νt)∑N
j=1 exp(Qt

j/νt)
.

In the limit νt → 0+, this scheme chooses it = arg maxiQ
t
i

and as νt increases the probability of selecting any other arm
increases. Thus, Boltzmann selection generalizes the max-
imum operation and is sometimes called the soft maximum
(or softmax) rule.

The parameter νt is known as the temperature parameter
of the softmax, and the functional form of the parameter νt is
known as a cooling schedule. In [3], we showed that cooling
schedules of the form νt = ν/ log t, ν > 0 are effective in
modeling human behavior.

3.3. Performance guarantees for UCL

In [3], we studied the case of homogenous sampling noise
(i.e., σ2

s,i = σ2
s for each i) and showed that the UCL algorithm

achieves logarithmic regret with an uncorrelated uninforma-
tive prior. Specifically, we proved the following theorem.

Theorem 1 (Regret of the Deterministic UCL algorithm).
The following statements hold for the Gaussian multi-armed
bandit problem and the deterministic UCL algorithm with
uncorrelated uninformative prior and K = 1:

1. the expected number of times a suboptimal arm i is cho-
sen until time T satisfies

E
[
nTi
]
≤
(

8σ2
s

∆2
i

+ 2

)
log T + 3;

2. the cumulative expected regret until time T satisfies

JR =

T∑
i=1

Rt ≤
N∑
i=1

∆i

((
8σ2

s

∆2
i

+ 2

)
log T + 3

)
.

The implication of this theorem can be seen by comparing
the first statement of the theorem with the Lai-Robbins bound
(2): the deterministic UCL algorithm achieves logarithmic re-
gret and thus is considered to have optimal performance. A
similar theorem holds for the stochastic UCL algorithm with
appropriate tuning rule for ν; see [3, Theorem 7].

3.4. UCL as a model of human decision making

In [3], we studied data from a human-subject study where
participants solved a spatially-embedded MAB problem. By
spatially-embedded MAB problem, we mean a MAB problem
where the arms correspond to patches of space, in this case,
squares in a 10× 10 grid. Such a problem might model, e.g.,
function optimization in a discretized space. The spatially-
embedded MAB problem then inherits structure from the
smoothness of the function being optimized.

We showed that, in this problem, subject performance
largely fell into two categories which we termed phenotypes:
one corresponded to cumulative regret depending approx-
imately linearly on T and represented poor performance,
while the other corresponded to cumulative regret depending
approximately logarithmically on T and represented good
performance. Subjects displaying the logarithmic phenotype
in fact achieved performance better than an otherwise “opti-
mal” algorithm over the short time horizon of the experimen-
tal problem, which we ascribed to the subjects’ understanding
of the structure of the problem. In the spatially-embedded
MAB problem, the smoothness of the underlying function
being optimized means that the rewards from one arm will be
highly correlated with the rewards from nearby arms and less
correlated with arms that are farther away.

The assumption of spatial smoothness in mean rewards
can be translated into an assumption on the correlation struc-
ture of m by choosing the elements of Σ0 to have the form of
an exponential radial basis function with length scale λ ≥ 0
representing the spatial smoothness and overall scale factor
σ0 ≥ 0 representing the strength of the subject’s beliefs:

(Σ0)ij = σ2
0 exp(−rij/λ),

where rij is the distance between arms i and j.

Similarly, one can parametrize the prior mean µ0 ∈ RN

by setting (µ0)i = µ ∈ R for each element i. Finally, by
adopting the cooling schedule νt = ν/ log t, ν > 0, we
can parametrize the subject’s decision noise with a single
parameter. This yields set of parameters consisting of the
four scalars µ ∈ R, σ0 ≥ 0, λ ≥ 0, and ν ≥ 0. In [3],
we showed that careful choices of these four parameters al-
lowed the stochastic UCL algorithm to produce behavior that
qualitatively matched the two behavioral phenotypes.
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4. MODEL FITTING TO HUMAN CHOICE DATA

In [3], we showed that the four-dimensional parameter vec-
tor θ = (µ, σ0, λ, ν) was sufficient to allow the stochastic
UCL algorithm to qualitatively fit human subject data. There-
fore, measuring θ would allow a system to quantify a human
operator’s intuition about the structure of the problem, as ex-
pressed through their choice behavior. In [4], we studied the
problem of estimating θ from behavioral data in detail using a
maximum likelihood approach. We showed that the stochas-
tic UCL algorithm defines a likelihood function in a straight-
forward way and that this likelihood function can usefully be
approximated as a linear function of θ by linearizing about
a nominal parameter vector θ0. We derived conditions under
which the resulting maximum likelihood problem is convex
and showed that it could be solved by standard convex opti-
mization tools.

We then applied the estimation procedure to data from the
human subject experiment first studied in [3]. The experi-
ment design was such that subjects solved one of two tasks,
each with a different underlying reward structure, which we
referred to as a landscape. The subjects presented with each
landscape separated into two phenotypes as in [3], resulting
in four groups of subjects: high and low performance pheno-
types for each of the two landscapes. We used the estimation
procedure to estimate θ for each subject and then compared
across the four groups of subjects.

The parameter estimates were relatively precise (i.e.,
small confidence intervals) for the two high-performance
groups and relatively imprecise (i.e., large confidence inter-
vals) for the two low-performance groups. This is unsurpris-
ing, as the stochastic UCL algorithm is designed to have high
performance and it is likely that the set of parameter val-
ues corresponding to low performance is large, while the set
of values corresponding to high performance is likely to be
relatively small. Comparing the parameter estimates across
the four groups then showed that there was a statistically-
significant difference in parameter values between the two
high performance groups but no other statistically-significant
differences between groups. One can then conclude that, at
least as quantified by θ in the stochastic UCL model, the sub-
jects who had high performance had detectable differences
in their intuition about the problem. Therefore, estimating θ
from a subject with high performance can provide quantified
information about how to achieve high performance with the
stochastic UCL algorithm.

5. IMPLICATIONS FOR HUMAN-MACHINE
INFERENCE NETWORKS

This work has implications for human-machine inference
networks. For applications where inference is being per-
formed to support a decision, it may be possible to model
the joint inference-decision task using the multi-armed bandit

framework. For cases where the MAB model is appropriate,
our findings show that humans can achieve performance that
greatly exceeds that of an otherwise “optimal” algorithm,
particularly when the time horizon T is short and the MAB
problem has significant structure. Furthermore, the stochastic
UCL algorithm can be used as a model to quantify the in-
tuition of a human decision maker in terms of its parameter
vector θ.

The work in [4] shows that standard maximum likelihood
parameter estimation techniques can be used to estimate θ and
that statistically-significant information can be extracted from
the observed behavioral choice data of high-performing in-
dividuals. One could then build a human-machine decision-
making system where an expert would perform a certain num-
ber of initial choices. These initial choices would be used to
estimate the expert’s value of θ, and then the system could
make autonomous choices by employing the stochastic UCL
algorithm the estimated value of θ as input parameters. In
this way, the model and estimator could be used to train the
stochastic UCL algorithm to make better decisions.

There are a number of clear directions for future re-
search along these lines. One direction is to pursue modeling
inference-decision problems in the MAB framework. Gai et
al. [15] have presented one example from the domain of wire-
less networking, but there are undoubtedly others. Another
direction pertains to the construction of human-machine sys-
tems. In this setting, open questions abound: What is the ap-
propriate amount of training for the machine system? When
should the machine ask for additional training from the hu-
man, for example if it detects that the problem has changed in
some way? If the human needs to make the ultimate decision,
what information should the machine provide, and in what
form (e.g., a suggested action or set of actions)? Undoubtedly
the answers to these questions will depend upon the applica-
tion context, but there are likely fundamental problems to be
solved as well.

6. CONCLUSION

In conclusion, we argue that the multi-armed bandit problem
is a useful framework for studying the interaction between
human and machine in the context of active inference prob-
lems. The stochastic UCL algorithm can be considered both
as a parametric model of human decision-making behavior in
MAB problems and as a computationally-efficient and high-
performance method to solve such problems. The algorithm
parameters θ form a quantitative, principled interface between
human and machine. This framework will allow the construc-
tion of joint human-machine inference systems which will
raise additional fundamental questions in turn.
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