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Abstract—Artificial intelligence is often touted as the
ultimate automation technology capable of outperforming
humans. It is also feared by some because of its potential to
eliminate certain jobs. In this paper, we describe scenarios
in which man-machine symbiosis, or properly designed
combinations of man and machine, can actually outperform
man and machine. We also present a statistical solution to a
constrained version of a generic problem in man-machine
symbiosis. Specifically, we solve the problem of optimal
selection, ordering and presentation of data to a human
to solve a class of problems that artificial intelligence can
fail to solve on its own, such as fraud detection. The man-
machine symbiosis solution we present overcomes human
cognitive biases which stand in the way of their rational
decision making.

Index — Cognitive biases, Subset selection, Bayesian
Hypothesis Testing, Man-Machine.

I. INTRODUCTION

Man-machine symbiosis can outperform man and ma-
chine alone in several tasks, like fraud detection. This
is because humans have some expertise and experience
that cannot be fully learned by the machine. On the
other hand, humans are not rational decision makers.
They are subject to cognitive biases; heuristics that can
lead them to wrong conclusions [12]. For instance, large
scale problems cannot be handled by humans optimally.
We propose in this paper man-machine symbiosis where
the human experts are the decision makers and the
machine mitigates cognitive biases to transcend human
limitations.

Several cognitive biases have been studied in the
literature [6]. As an example of cognitive biases, we
cite the anchoring bias where humans are influenced
by starting points or initial beliefs. In [7] and [13] the
starting point bias is modeled by the impact of the initial
bid value on the willingness to pay. Other biases are
the confirmation bias where humans tend to emphasize
observations confirming their belief, and neglect obser-
vations contradicting their beliefs. In [4], the belief
update model is modified to account for the confirmation
bias in the context of auditing. The overconfidence bias
is investigated in [10], where they verify its existence in
analyst earning forecasts. In [14], Hogarth and Einhorn
study the order effects in the update of belief. More
precisely, they point out that humans can be subject to
the primacy effect [3, 22] where humans emphasize the
first set of information, and the recency effect where
the last set of information is emphasized. They show
also that with an increasing amount of data presented to
them, subjects can get tired and become less sensitive to
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new observations [14]. Moreover, in [25], they show
experimentally that different order in which information
is presented to humans can lead to opposite decisions.

As part of the efforts to do cognitive bias mitigation,
[9] proposes a serious video game that detects some bi-
ases in the players’ performance and teaches them how to
identify and mitigate them through the use of feedback.
[5, 8] also uses serious games as a way to recognize
and mitigate human biases including the anchoring bias.
An alternative to training humans in order to reduce
biases in their decisions is to modify the way decisions
are presented to them. In experiments that involved
participants to play a game or watch an instructional
video, [19] proposes giving a single training intervention
during the experiments as an effective way to mitigate
the biases addressed in these experiments. In [21], the
Bayesian updating model is modified to incorporate and
model the cognitive biases in human decision making.
Based on this model for human information processing,
[20] studies the problem of optimally ordering data
to human subjects in order to mitigate biases using
the Neyman-Pearson test [11] as the statistical test for
decision making. In this paper, we use the Bayesian
hypothesis test [17], and we study the same problem of
optimal data ordering, but we allow the incorporation of
human expertise that is unknown to the process ordering
the data, as well as the prior probabilities of the possible
hypotheses. In [2], the human bias is considered under
the sequential probability ratio test (SPRT) [17]. In this
different setting, data is shown to the human subject
until the latter reaches a confident decision, and discards
the subsequent information. In other words, the problem
considered wouldn’t include any selection of the data,
but rather the optimal ordering of data to mitigate biases
under this different setting. In [1], the bias is modeled
by modifying the thresholds in the SPRT, and ordering
is done based on the statistics of the data, and not on
the sufficient statistics as done in this paper.

In this paper, we investigate the problem of optimally
combining the man and machine, by studying how a
machine can optimally select and order observations to
humans in polynomial time, under the general framework
where humans know additional information through their
expertise that the machine has no access to. In Sec. II
of the paper, we describe scenarios in which human
machine collaboration can outperform human and ma-
chine alone. In Sec. III, we review the model used for
human information processing, and present the problem
of optimal ordering of data to show to humans, as well
as its solution. In Sec. IV, we show through simulations
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that the proposed approach allows human performance
to be near optimal under the confirmation bias, and that
the approach is robust to outliers. And finally in Sec. V,
we review the challenges of machine assisted human
decision making.

II. THE IMPORTANCE OF COLLABORATION
BETWEEN MAN AND MACHINE IN
DECISION MAKING

Moravec’s paradox states that humans and machines
are good at different tasks [23]; men are better at
intuitive tasks while machines are better in more resource
intensive tasks. In 2005, the online chess-playing site
Playchess.com hosted a free style tournament where
teams could use the help of computers [15]. The surpris-
ing outcome was not that the winner team included both
human players and computers, but that a pair of amateur
players using three computers were able to outperform a
grandmaster with the most updated computer. This was
possible because of the way they coached their comput-
ers to look very deeply into positions [15]. Therefore
the takeaway is not only that men with machine can
outperform either alone, but that we should also figure
out what is best way they can complement each other.

Fraud detection is another example where human
intervention is needed. Specifically, machine learning
can only capture fraud that is similar to what it has
seen or been trained on in the past. But attackers are
creative and always try new tactics. While machine
learning problems will learn eventually the new trends,
they would need more substantial data from the new
attack in order to learn it. Machine learning algorithms
would be ideal to process the large amount of data, and
to detect the obvious cases. But uncertain cases should
be reviewed by experts who can use their skills to make
the right decision, or further expand the investigation
and ask for more data for a specific case. And so to go
beyond the overall detection rate of machines, one needs
to determine what to show to a human being and in what
order to maximize the chance that the human being will
pick up the new fraud mechanism. Let’s consider for
example that the human subject is asked to review a
decision of “no fraud” by the machine. First, there is
the risk of anchoring biasing the human with the initial
judgment of “no fraud”. Also, the amount of features to
show to the human subject could be very large. Hence,
we need to decide which observations, and in which
order, should be shown to the human subject so that
we mitigate their potential biases.

III. COGNITIVE BIASES IN DECISION
MAKING

In order to illustrate man-machine symbiosis, we
consider decision-making in a simple binary hypothesis
testing problem. The binary hypothesis testing problem
decides between two hypotheses Hy and H; based on

the vector Y of N observations y;, 0 < ¢ < N. In
the continuous-valued case, Y € RY, and Y admits the
following probability densities:

Hy YNf<Y|H0) (1)
H1 : Y ~ f(Y|H1),

Assuming the observations are independent, let f(.|H;)
denote the probability density function under hypothesis
H;, and let I; denote the log-likelihood ratio for observa-
tion y; where I; = log(ﬁz}gég), and L; the cumulative

log-likelihood ratio up to the ¢th observation y;, such
i H i
that L; = log([T,_, %gZIH;g) = ey ke

A. Biased information processing model

As suggested in [14], and in order to model the
cognitive biases of human beings, [21] introduces a
modification of the traditional Bayesian updating by
introducing adjustment weights w; when calculating the
cumulative log likelihood ratio. The Bayesian updating
model is modified as follows:
LY =LY | +wil; 2)

K2

where L? denotes the biased cumulative log likelihood
ratio, w; is the adjustment weight that the subject gives
to the new observation due to biases (w; depends on [; or
LY). For example, the confirmation bias is modeled by
giving high adjustment weights to data confirming the
hypothesis to which a human subject is biased, and low
adjustment weights to disconfirming data. This model is
based on the anchoring and adjustment model proposed
and validated by Hogarth and Einhorn[14], which states
that humans update their beliefs by subjectively weigh-
ing a new observation depending on their current belief
at the time of its acquisition.

B. Problem statement

In the context of binary hypothesis decision-making,
consider a human Bob subject to cognitive biases. Con-
sider also a vector Y of N independent observations,
and a machine used to select and order N’ out of the
N observations to show to Bob. The machine has only
access to Y. Bob, and aside of the N’ observations which
will be presented to him, knows a set of observations X
through his past experience and other past events he is
aware of. Since Bob will be using a Bayesian hypothesis
test to decide the hypothesis, he will be setting a specific
threshold A based on his estimates of the costs and the
prior probabilities. The problem is to find out which N’
observations, and in which order, should the machine
present to Bob such that his performance is optimal. We
define an optimal performance as being that of an oracle
who knows X (known to Bob), the N-sized vector Y
(known to the machine), and the threshold A (/set by
Bob). We define Ly = Lx + L%, = Lx 4+ S0, wil;,
as the cumulative log likelihood ratio of Bob, where L x
is the cumulative log likelihood ratio of Bob based on
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observations X before seeing any observation of Y, and
LY, is the biased cumulative log likelihood ratio based
on the N’ sized ordered subset of the observations Y.
We also define Lo = Ly + Ly = Lx + Zfil l;, as
the cumulative log likelihood ratio of the oracle, where
Ly is the cumulative log likelihood ratio based on the
observations Y. We note that Lx here is assumed to
remain constant as the human receives the observations
y;. Dealing with Lx changing with the observations
y; is out of the scope of the paper, and would require
interaction with the human being to estimate it. We also
note that a similar problem has been considered in [20],
with the distinction that this paper, unlike [20], is able
to capture the man-machine symbiosis by incorporating
the past knowledge and the expertise of the human
subject. This has been possible by using the Bayesian
hypothesis framework instead of the Neyman-Pearson
test. Moreover, this framework allows to account for the
priors of the hypotheses (or possibly biased priors), as
well as to generalize the approach for any distribution
of the independent observations Y .

C. Optimizing human decision making

The Bayesian hypothesis test solves the binary hypoth-
esis testing problem by choosing the hypothesis which
minimizes the average cost of the decision, also known
as the Bayes risk: R = Zi:o Z;:o C;;P(H;|H;)P;,
where C;;, 0 <14,j <1, represents the cost of deciding
H; when Hj is the true hypothesis, and the prior
probability of hypothesis Hy is Py and of hypothesis
H; is P;. The optimal test becomes as follows:

(Cio0 — Coo)
(Co1 — C11)

where L denotes the cumulative log likelihood ratio at

the time of decision, and 7 = %. Since we need to

match the performance of Bob to that of the oracle, the
problem boils down to:

LZ\=log(t

<

3)

argmin
KC[N]:|K|=N’

|R(Lo) — R(Lp)| )

where
R(Lo) = ClOPOP(LO > A‘HO) + C()1P1P(LO < )\|H1)
+ COQPOP(LO < )\lHo) + 011P1P(L0 > )\|H1)
4)
is the Bayes risk of the oracle and
R(Lp) = C1oPyP(Lg > N Hy) + Cor PLP(L < \Hy)
+ CooPoI:)(LB < /\‘Ho) + Cllplp(LB > )\|H1)
(6)

is the Bayes risk of Bob, and where P denotes the altered
statistics of the cumulative log likelihood ratio of the
ordered subset K of N’ observations after selecting them
from the complete set of /N observations.

Let Pdo(\) (Pdp(X)) and Pfo(N) (Pfp(X)) denote

the probabilities of detection and false alarm of the oracle
(Bob), respectively. The problem can be rewritten as :

|(C10Po — CooPo)(Pfo(X) — Pfa(N))

argmin
KC[N]:|K|=N’
— (Co1 Py — C11P1)(Pdo(N) — Pdg(X))|
(7

This problem is solved when matching the tail proba-
bilities of Bob and the oracle without needing to figure
out P, but instead by making Lp as close as possible to
Lo. And now if the ordered subset K of N’ elements is
chosen such that

Lx+ L% —A=Lx+Ly—X\ (8)

and equivalently Ll]’v, = Ly, then the tail probabilities

are matched. Therefore, we are interested in finding

an ordered subset K of N’ observations such that

LY, is as close as possible to the target T = Ly.

In fact, using techniques from [20], we can show

that if LY, is such that T — & < L&, < T + &,
A—Lx —E[Ly|H1]+$

then Q( Var(Lx) ) < Pdp(A) and Pfp(A) <
5
Q(A_Lx\ji[(ﬁ;lfl(’]_ 2) for Gaussian observations.

We note that here, we assumed that the priors of
Bob are the true ones. If Bob has biased priors (i.e. the
cognitive biases are not only incurred by the presented
observations, but are present even before), then 7, =
77%), where 73 is the biased ratio of Bob’s priors, and 7
is a multiplicative factor that incorporates the bias. And
so if we define LY, = LY, —logn, the problem can be
solved similarly by replacing L%, with L%, and hence
we would need Ll]’\,, = Ly, i.e. Ll]’v, =Ly+logn="T.

IV. RESULTS

The problem boils down to finding in polynomial
time an ordered subset whose weighted sum is within
a guaranteed small distance of a given target. This setup
is the same as the one in [20], and hence we use their
proposed approximation algorithm in order to find the
subset, which is a modification of the approximate subset
sum algorithm [18]. The solution returned is within a
factor 1 4 € of the optimal solution. The running time is
polynomial in both N and %

A. Confirmation bias and results

We test our algorithm under the setting described in
Eq. 1 and using Gaussian distributions. In modeling the
confirmation bias, the adjustment weight w; in Eq. 2
depends on the value of the current log likelihood ratio
l;- We model the bias by assigning small adjustment
weights w; to log likelihood ratios I; contradicting a
given hypothesis, and w; close to 1 for I/; supporting
this hypothesis.
We simulate the performance of the algorithm whenever
the hypothesis supported by the subject is Hy. We repeat

the simulations for different ratios %’, i.e. for different
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—— Original data without bias
Modified algorithm with 20% of data retained
Modified algorithm with 40% of data retained
Modified algorithm with 60% of data retained
Random selection with 20% of data retained

= = Random selection with 40% of data retained

——Random selection with 60% of data retained
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Figure 1: ROC curves under different selection of Gaus-
sian observations with confirmation bias

percentages of the data selected. In the simulations, the
percentages of data retained take the values 20%, 40%
and 60%. As shown in Fig. 1, and for all values of
the ratio NW/ the algorithm gives ROC curves (green)
nearly overlapping the optimal ROC curve (blue) for
relatively high probability of detection. However, for low
probability of detection, the green ROC curves don’t
completely match the original blue curve. This is because
whenever hypothesis H; is true, the bias (towards Hy)
leads to larger gap between the closest subset sum to
the target and the target, and when the probability of
detection is low, it is more important for the subset sum
to be as close as possible to the target. Also, as shown in
Fig. 1, the higher the ratio &-, the closer the green ROC
curves to the original blue ROC curve (only noticeable
for low probability of detection), and the closer the red
ROC curves of the random selection to the original ROC
In the random selection case, the higher the ratio N,
the closer the statistics of L%, to the statistics of the
original Ly, and therefore the closer the performance of
the random selection to the oracle’s performance. Now
when the selection algorithm is applied, it is beneficial
to increase the ratio %/ so that there is a higher number
of possible combinations resulting in Ll]’\,,, and thus a
higher probability for LY, to be close to L.

B. Outliers

It is important to check that the presence of outliers
in the original data won’t affect the performance of the
selection algorithm; the outliers may have little effect
on the large number of observations, and we want to
make sure that this still holds after cutting down on
the number of observations. We expect the proposed
algorithm to be robust to outliers even with using less
observations, because the algorithm matches L%, to
Ly, and thus the advantage of having all the data
(and therefore knowing L) is preserved after selecting
the observations. To verify that, we run simulations
where with a small probability, we generate an outlier
observation from a Gaussian distribution with a mean

2 &8 8
\
\,

N

——Original data
L Modified approximate subset sum algorithm
£ —o—Random selection

Ny

Probability of detection
N

=

L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
Probability of false alarm

Figure 2: ROC curves under different selection of Gaus-
sian independent observations with presence of outliers

far from the mean of the Gaussian distribution of the
corresponding hypothesis. NW/ is set to be 40%. As shown
in Fig. 2, the ROC obtained using the proposed algorithm
still matches the performance of the optimal ROC using
the whole set of observations NN.

V. THE CHALLENGES OF HUMAN MACHINE
INTERACTION: ASYMMETRIC
INFORMATION

A. Learning humans

Human machine collaboration presents many chal-
lenges and open problems. The challenges mainly lie in
learning the human behavior. In Eq. 8 , Lx could change
with each new observation presented to the human sub-
ject. Cases when Lx could vary with new observations
are for example when humans recall additional past ob-
servations when shown a certain observation. However,
the mechanism in humans that lead them to remember
information based on the presented information to them
is very complex. It is based on the relation between
their past experiences and the new pieces of information
shown to them. Hence ordering data to trigger the recall
of information in the human brain that is pertinent to
the problem but unknown to the machine is a difficult
problem to which we don’t know the solution yet.

Another unaddressed problem is that the weights pa-
rameters in our model in Eq.2 should be learned through
an adaptive process that would require interaction with
the human subjects by asking them to do specific tasks.

B. Black box models

On the other hand, in the context where the human
receives the decision from a machine and has to make
the final decision, the human often doesn’t understand
why the decision has been made. With state of the art
models like neural networks, these algorithms are black
boxes to humans beings, which limits the value of the
help that the human is getting from the machine. A lot of
effort is being spent in understanding which features lead
to this decision, and the reason behind those decisions,
leading to more interpretable machine learning models
[16, 24].
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