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ABSTRACT

Intelligent tutoring systems (ITS) have been a topic of great
interest for about five decades. Over the years, ITS research
has leveraged AI advancements, and has also helped push the
boundaries of AI capabilities with grounded usage scenarios.
Using ITSs along with classroom instruction to augment tra-
ditional teaching is a canonical example of how humans and
machines can work together to solve problems that are other-
wise overwhelming and non-scalable individually. The expe-
riences of personalized learning created by (1) seamless or-
chestration of human decision-making at few critical points
with (2) scalability of cognitive capabilities using AI systems
can drive increased student engagement leading to improved
learning outcomes. By considering two particular use-cases
of early childhood learning and higher education, we discuss
the challenges involved in designing these complex human-
centric systems. These systems integrate technologies involv-
ing interactivity, dialog, automated question generation, and
learning analytics.

Index Terms— Intelligent tutoring systems, ITS, AI in
Education, Dialog-based tutoring, Assessments

1. INTRODUCTION

Technology-driven intelligent tutoring systems (ITS) provide
a way for computing systems to autonomously teach learners
by giving them immediate and personalized feedback. Intelli-
gent tutoring systems have been envisioned since the dawn
of AI but it is only over the last two decades that signifi-
cant progress has been made in this field. ITS systems have
been envisioned as aids for learners both inside and outside
classrooms, primarily as supplemental learning aids. In class-
rooms, ITS systems act as scalable augmentation aids to tradi-
tional multi-student settings for automating a number of tasks
in the teaching and learning process. This in turn helps teach-
ers focus their effort on critical tasks that humans are inher-
ently good at (ranging from interventions with empathy to
nurturing creativity), which machines cannot necessarily em-
ulate effectively. Recent advances in AI are driving stronger
human-machine collaboration in the learning process, espe-
cially making aspects of Intelligent Tutoring scale up to larger
masses of students. This paper focuses on the use of ITS sys-
tems within classrooms.

Fig. 1. Interactions between a teacher, a digital assistant and
a student.

In one envisioned scenario (Figure 1), the traditional
teacher-student instruction model can be augmented by in-
cluding a digital assistant such as an ITS which can be con-
figured by a teacher with specific high level learning objec-
tives. The ITS then exposes various personalized learning
and assessment activities to each student, observes various
performance and behavioral signals from the student, and
provides insights to the teacher. The teacher in-turn can use
the insights specific to each student or in aggregate as a class
to customize interventions, and provide informed motivation
and remediation to the student for continued involvement in
the learning process.

This collaborative process is significantly facilitated by
two important recent advancements. The first is the digital
presentation of learning and assessment activities. Assess-
ment activities in particular are benefiting from significantly
higher levels of machine automation and processing than was
possible previously. The second advance is the increased ac-
cess students have to smart devices that have a multitude of
sensors and that can provide data for better understanding of
the student’s context and usage patterns. More importantly,
these advancements have resulted in a deluge of data that can
be mined using AI algorithms to gain significant insights into
behavioral processes during learning. However, in typical us-
age situations, the data can also have a high degree of vari-
ability and variety. To be able to exploit this data for better
learning outcomes, we require a combination of (a) deriving
actionable intelligence from the large amount of data, and (b)
abstract decision making on a continuum of knowledge. This
is where the teacher and digital-assistant symbiosis can pro-
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vide a richer experience to the students.
Our efforts to build tutoring systems for both early child-

hood and higher education have enabled us to explore: 1.The
design space of automation of the learning process, 2: Un-
derstand the different components of the process that can be
automated with state-of-the-art technologies, and 3: Identify
the components that are better done by human teachers. We
discuss the design space we explored, our experience in im-
plementing our solutions, and several challenges we encoun-
tered, some of which still require additional research.

The rest of the paper is organized as follows. Section 2
discusses the history of AI in education and the state of the art
in human-machine collaboration in the domain of education.
Section 3 discusses our efforts in building tutoring solutions
and the challenges involved. Section 4 concludes.

2. BACKGROUND

The primary goal of intelligent tutoring systems in formal ed-
ucation since the mid 1950s (when it was termed Computer
Assisted Instruction) has remained the same, which is to cre-
ate efficient learning environments, accomplished mostly by
enabling instructors to do what they do best. Initially the sys-
tems were expensive, rule based and limited to easier tasks
such as linear presentation of information, record keeping,
progress tracking, or drill and practice. Modern day ITSs
are cheaper, more accessible and use sophisticated machine
learning to solve harder problems such as enabling more natu-
ral interactions like textual and spoken dialog, evaluating stu-
dent answers, contextual information retrieval, or automati-
cally generating assessments [1] [2].

More recently, in [3], the authors highlight key sources of
learning gains namely frequent error repair, self-explanation,
breaking the interaction plateau, rich natural language under-
standing, explorable explanations and tutor personas and call
out for a renewed focus on making tutoring systems more en-
gaging. The case studies that we discuss in this paper are an
extension of the effort in [3], except for the difference that the
original work was piloted for K-12 and our work is in early
childhood and higher education.

ITSs have their roots in Artificial Intelligence (AI) [1] [4]
[5]. Just as in AI, the underlying core problems in ITS revolve
around knowledge representation and reasoning. How do we
model the domain and the student? How do we induce knowl-
edge from the content? How do we reason about the content
and data to derive insights? In [5], Self questions the theoreti-
cal foundations of ITS and suggests that AI researchers might
have retreated from the ITS arena when they realized the need
for more fundamental work on mental models, language un-
derstanding, knowledge representation etc. Fast forward over
a quarter century, how are we doing now? We attempt to ad-
dress the above question in this paper. In (Figure 2) we depict
the different capabilities that are best handled by machines
and humans separately and some that can be done by both.

Fig. 2. Human and Machine capabilities (not exhaustive).

The general paradigm of Human-machine collaboration
that can solve hard problems is not new: it has been used
in several instances that would otherwise have been difficult
for humans or machines individually. In some instances, ma-
chines perform intelligent tasks and humans intervene only
where machine has low confidence in what it has done. In
other instances, machines require human involvement at spe-
cific points in a work-flow, where only humans can take intel-
ligent higher order decisions. For instance, the protein folding
problem that was unsolved for ten years was eventually solved
in three weeks by a seamless orchestration of human and ma-
chine capabilities [6]. Similarly the DARPA shredder chal-
lenge demonstrated how a difficult task such as re-assembling
a shredded document can be converted into a human-in-the-
loop problem and solved with accuracy as well as speed [7].

Several human-in-the-loop systems have also been ex-
plored specifically in the education domain using reinforce-
ment learning [8, 9]. The hope is that teachers can support
higher order tasks such as taking abstract or affect-aware
decisions for intervention, whereas the AI system can find
the most effective learning paths from numerous possibilities.
While it is easy to appreciate the benefits of the collaboration
between teachers and digital assistants in aiding traditional
instruction, the key challenges involve pushing the capabili-
ties of machines systematically (Figure 2), which can make
the collaboration fruitful and effective. Our efforts in build-
ing multi-modal learning technologies in the early childhood
and higher education domains target this exact problem of
pushing the boundaries.

3. MULTI-MODAL LEARNING

3.1. Higher Education

In higher education, mixed-initiative multi-modal conversa-
tions have been shown to help students construct knowledge
[10]. A dialog based tutoring system answers students’ ques-
tions, assesses student understanding by analyzing their nat-
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ural language responses to tutor initiated questions, person-
alizes the next activity suitable for each learner by modeling
their engagement and mastery. Dialog based tutors offer a
rich opportunity to elicit self-explanation from students [11]
and extract signals of confusion, misconception, frustration
and knowledge gaps all of which can be relayed back to the
instructors via a dashboard.

We have built a conversational tutoring system that or-
chestrates multiple learning activities such as natural lan-
guage exchanges, visual concept grouping, worked exam-
ples, fill-in-the-blanks to name a few. The rationale behind
that is that not all questions, particularly those belonging to
different Bloom’s levels lend themselves to the same kind of
experience. We discuss a few of those activities below.

3.1.1. Assessment Evaluation

For tutor initiated questions, students respond in short sen-
tences. Existing dialog based tutors use different techniques
to analyze student responses [12]. In our tutoring system, we
use an ensemble of machine learning models to analyze and
classify the student responses. Here, we train the models and
compare the ability of the system to mimic a human tutor.
The responses are graded both by humans and the tutor. Fig-
ure 3 shows the distribution of F1-scores [13] between two
humans and a human and the system. F1-score is the har-
monic mean of precision and recall, and is a measure of a
test’s accuracy. The distribution is similar with the humans
having higher agreement (>0.8) for a larger percentage of re-
sponses. However, the distribution indicates that for a signifi-
cant percentage of responses, the system can mimic humans.
We have also found that student responses and our analyses
of them can directly inform content creation, particularly the
formulation of questions and reference answers. Short an-
swer analysis remains a challenge because of the myriad ways
in which ideas can be expressed in natural language and the
need to compare student responses not just against a refer-
ence answer but against a knowledge base in order to provide
meaningful feedback.

3.1.2. Assessment Generation

During the course of the dialog, if a student provides a re-
sponse that is partially correct, the tutoring system gener-
ates a fill-in-blank assessment questions automatically, that
varies for each student depending on the knowledge gap. The
knowledge gap is identified by comparing the gap in the stu-
dent response and the reference answer(s). Variations in the
questions can be automatically generated to provide a differ-
ent experience to a student, each time they converse with the
system. Domain experts still need to initially validate the as-
sessments so the challenge is to scale the validation step. With
sufficient training data, we are confident that the system can
learn the most important concepts.
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Fig. 3. Distribution of F1-scores for student responses com-
paring two humans and a human and the system.

3.1.3. Knowledge Extraction and Induction

Extracting examples and concepts: When students struggle
to answer questions even with hints, pumps or prompts, we
present contextual examples to help them understand the con-
cepts better. We automatically extract some examples based
on metadata linking the examples with learning objectives.
But there are a few challenges to fully automating example
extraction in some STEM domains as they demand a very
good understanding of the examples to ensure they are rel-
evant. Additionally we use the Watson Natural Language Un-
derstanding (NLU) service 1 to extract concepts and keywords
and apply clustering approaches to create concept groupings.
We then surface these as alternative assessments. We require
a human-in-the-loop to help validate the groupings and train
the system initially but are improving our algorithms to create
richer concept clusters automatically.

Extracting question and answers: Answering student
questions requires the system to identify frequently asked
questions (FAQ). These questions can then be used as input
to train a question answering system such as, the Watson
Conversation service 2. There are several valuable sources
like forums and learning management systems that can be
used to extract FAQ [14]. Similarly, definitions from the con-
tent can be extracted to generate questions and answers. We
are currently not focusing on deeply conceptual questions.

In order to test our conversational system, we built a Wiz-
ard of Oz (WoZ) application [15] but with a twist. When a
student provides a response to a tutor-initiated question, the
response would first go to the backend (Watson Tutor in this
case) for analysis. The system returns feedback, which now a
human wizard can choose to accept and pass on to the student
or reject and substitute. This allowed us to debug our dialog
flows. We also added the capability to annotate every turn

1https://www.ibm.com/watson/services/natural-language-understanding/
2https://www.ibm.com/watson/services/conversation/
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Fig. 4. Possible capabilities for a machine in the loop.

with metadata that would later inform the short answer scor-
ing as well as sentiment analysis. We plan to extend the WoZ
application to handle other capabilities as shown in Figure 4.

3.2. Early Childhood

In building early childhood solutions, we have been explor-
ing automated assessment generation, assessment evaluation
through gamification [16], and contextual visual recogni-
tion [17] techniques that enable in-class tools for testing
the understanding of children and providing learning rein-
forcement activities as a part of the digital exposure. The
dashboards of insights derived out of click-stream and perfor-
mance data collected through gamified learning and assess-
ment activities are used by teachers in turn to select specific
topics of instruction. For instance, in a vocabulary applica-
tion we built for classrooms [16], the dashboards accessible to
teachers highlight the words that most students are struggling
to understand, and hence create an evidence-based prioritized
list of words that a teacher can take up on any particular day.
In what follows, we describe specific solution components
to drive such applications, and highlight some challenges for
future work.

3.2.1. Assessment Generation

Assessments play an important role in the overall learning
process, since they provide a way to continuously measure the
learner’s level of understanding, and personalize their learn-
ing. For the vocabulary application we built, we automatically
generate Multiple Choice Questions (MCQ) that are multi-
modal (the questions were presented using text-to-speech and
the choices of correct answers and distractors were images to
be chosen from by the child).

In order to relieve the teacher from worrying about as-
sessments, a machine should be able to generate questions of
various levels of conceptual difficulty. For multiple choice
question (MCQ) generation, this boils down to generation of

different kinds of distractors (wrong answer options). Gen-
erating MCQs with appropriate level of distractors for each
child, based on his prior knowledge is an interest problem for
future research. For instance, to test the understanding of a
word insect, an arachnid (e.g. a spider) is a harder distrac-
tor than a lion. Secondly, MCQ generation needs to ensure
that the images themselves that are being presented as correct
answers and distractors are of the right level of visual com-
plexity. Depending on prior knowledge, an image can have
varied level of visual complexity for a child. We are currently
working on algorithms that combine the visual complexity of
an image along with its conceptual complexity to come up
with very high quality MCQ assessments.

3.2.2. Multimodal Interactions

Since most children at an early age (preK to KG) cannot read
or write, their primary communication modalities are speech
and visual interfaces. Hence a digital assistant needs to use
multimodal interaction to engage with the learners. There are
several challenges, however, since visual and speech recog-
nition are still inherently hard for machines, especially under
challenging situations of child speech, noisy environments,
poorly lit environments, child’s improper use of camera de-
vices etc. We are attempting to build systems that work with
these imperfections of speech and visual recognition and aug-
ment them with contextual information from the interaction
the child has with the system. However, speech recognition
for children (aged 3-5) is a long-standing missing feature,
and significant advancements, including speech data collec-
tion for training speech models are necessary. Similarly, state
of the art visual recognition solutions provide a list of possible
labels for each image provided, along with a confidence mea-
sure. For better learning experience, the accuracy of such so-
lutions need to be significantly improved and contextualized
to the learning setting for a child, several challenges of which
we address in [17]. Overall, significant potential of improve-
ment exists for each of the AI technologies to enable ITSes to
effectively augment traditional classroom instruction.

4. CONCLUSION

Augmenting traditional instruction with intelligent tutoring
systems can relieve teachers from doing activities that are
more effectively done by machines, and lets the teachers focus
on what humans are good at. We are instantiating the use of
AI technologies in early childhood and higher education sce-
narios. We encountered several challenges in the process of
this integration into traditional instruction and are addressing
these challenges in our future research. Our exercise high-
lights the need for continued research in speech, vision and
conversation modalities of interaction.
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