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ABSTRACT

This work explores sequential Bayesian binary hypothesis
testing in the social learning setup under expertise diversity.
We consider a two-agent (say advisor-learner) sequential bi-
nary hypothesis test where the learner infers the hypothesis
based on the decision of the advisor, a prior private signal,
and individual belief. In addition, the agents have varying
expertise, in terms of the noise variance in the private signal.

Under such a setting, we first investigate the behavior of
optimal agent beliefs and observe that the nature of optimal
agents could be inverted depending on expertise levels. We
also discuss suboptimality of the Prelec reweighting function
under diverse expertise. Next, we consider an advisor selec-
tion problem wherein the belief of the learner is fixed and the
advisor is to be chosen for a given prior. We characterize the
decision region for choosing such an advisor and argue that a
learner with beliefs varying from the true prior often ends up
selecting a suboptimal advisor.

Index Terms— social learning, sequential binary hypoth-
esis test, cumulative prospect theory

1. INTRODUCTION

Team decision making typically involves individual decisions
that are influenced by the private observations and the opin-
ions of the rest of the team. The social learning setting is
one such context where decisions of individual agents are in-
fluenced by preceding agents in the team [1–3]. Individual
agents are selfish and aim to minimize their perceived Bayes
risk, according to beliefs as reinforced by earlier decisions. In
particular, a team of two agents can be treated as an advisor
followed by a learner.

Social learning, also referred to as observational learning,
has been widely studied and we provide a non-exhaustive list-
ing of some of the relevant works. Aspects of conformism
and “herding” were studied in [4–6]. The concept of herding
is further highlighted to be a consequence of boundedly infor-
mative private signals in [7]. Further convergence properties
of actions taken under social learning were explored under
imperfect information in [8].

This work was supported in part by the National Science Foundation
under grant CCF-1717530.

Rhim and Goyal [3] studied a sequential binary hypothe-
sis test in the social learning framework, termed social teach-
ing, and characterized optimal beliefs of agents that mini-
mize the Bayes risk of the last-acting agent. In two and three
agent contexts, they showed, counterintuitively, that it is opti-
mal for agents to use beliefs that do not match the true prior.
Specifically, the optimal advisor in the social learning context
is one who is open-minded, i.e., overweights the belief for
small prior, and underweights when it is large. On the other
hand, the corresponding optimal learner is one who is closed-
minded and behaves in the opposite way to the advisor.

Human actions are typically affected by individual per-
ceptions of the underlying context. Cumulative prospect the-
ory [9] seeks to provide a psychological understanding of hu-
man behaviors under risk. It introduces the notion of prob-
ability reweighting functions to explain irrational human be-
haviors. Among reweighting functions, the Prelec reweight-
ing function [10] satisfies a majority of the axiomatic behav-
ior of the prospect theory. Interestingly, the Prelec function
spans a class of open- and closed-minded beliefs and hence
one might expect it to emerge as the information-theoretically
optimal choice under social learning. However, we will dis-
cuss that it does not capture all behavioral patterns for the
optimal beliefs of agents.

In particular, we consider observation models with differ-
ent noise variances, which translates to varying agent exper-
tise. The expertise of the advisor and learner affect the nature
of optimal beliefs of the agents. Specifically, when the learner
has more expertise than the advisor, the Prelec function does
not capture the behavior of optimal beliefs. We also identify
interesting properties of the optimal beliefs.

We are ultimately interested in the Bayes risk of the
learner, and thus it is important that the learner uses the cor-
rect set of advisors for the task. To this end, we also consider
team selection for such sequential hypothesis testing, and
characterize the criterion for advisor selection.

2. PROBLEM DESCRIPTION

Consider a two-agent sequential decision making problem.
The underlying hypothesis, H ∈ {0, 1}, is a binary signal
with prior P [H = 0] = p0, and P [H = 1] = 1− p0. Quanti-
ties of the first agent (advisor) are denoted by subscript 1, and
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those of the second agent (learner) by subscript 2. Each agent
perceives p0 differently as qn, n = 1, 2, called belief.

Each agent receives the private signal Yn = H + Zn,
whereZn is an independent additive Gaussian noise with zero
mean and variance σ2

n. LetN (y;µ, σ2) be the Gaussian prob-
ability density with mean µ and variance σ2 at y. Then the
received signal probability densities for H = h are

f(yn|h) = fYn|H(yn|h) = N (yn;h, σ
2
n).

In addition, the learner acquires the decision of the advisor
Ĥ1, and makes a decision Ĥ2 based on (Ĥ1, Y2).

The advisor and the learner both are selfish and aim to
minimize individual Bayes risk with costs c(Ĥ,H). We re-
strict to the case where the cost is 0 for correct decisions and
let c01 = c(0, 1), c10 = c(1, 0). Then, the Bayes risk for the
nth agent is given by

Rn = c10p0pĤn|H(1|0) + c01(1− p0)pĤn|H(0|1). (1)

Thus each agent performs the likelihood ratio test, but the
learner assumes that the advisor has the same beliefs as her,
as she is unaware of the advisor’s belief q1. Therefore in this
social learning scenario, the decision made by the advisor re-
inforces the decision of the learner by appropriately strength-
ening the posterior probability of the underlying hypothesis.
The advisor follows the likelihood ratio test,

L(y1) ,
f(y1|1)
f(y1|0)

Ĥ1=1

≷
Ĥ1=0

c10q1
c01(1− q1)

,

and from [3], the learner decides according to

L(y2) ,
f(y2|1)
f(y2|0)

Ĥ2=1

≷
Ĥ2=0

c10q2
c01(1− q2)

pĤ1|H(ĥ1|0)[2]
pĤ1|H(ĥ1|1)[2]

,

where the subscript [2] of probabilities indicates probability
distribution ‘seen by the learner’, i.e., the probability com-
puted as if the advisor also has q2 as belief.

We formally introduce the Prelec reweighting function.

Definition 1 ( [10]). For α, β > 0, the Prelec reweighting
function w : [0, 1] 7→ [0, 1] is w(p) = exp(−β(− log p)α).

A more generic form, termed composite Prelec weight-
ing function has been defined in [11]. Notice that 1) w(p)
is strictly increasing; 2) has a unique fixed point w(p) = p
at p∗ = exp(− exp(log β/(1 − α))); and 3) spans a class of
open-minded beliefs when α < 1, i.e., overweights (under-
weights) small (high) probability, and vice versa when α > 1.

3. DIVERSE EXPERTISE LEVELS

Consider the two-agent team with observational noise vari-
ances σ2

1 , σ
2
2 . Note that smaller noise variance implies the

agent is more likely to infer correctly and so has more exper-
tise.

Recall the decision threshold for the Gaussian binary hy-
pothesis test with prior p, and variance σ2 is given by

λ(p, σ2) ,
1

2
+ σ2 log

(
c10p

c01(1− p)

)
.

Then, because the advisor thinks the prior is q1, the decision
threshold for the advisor is given by λ1 = λ(q1, σ

2
1). But,

the learner presumes that the advisor decides according to the
threshold λ1,[2] = λ(q2, σ

2
2).

Let P I
e,1, P

II
e,1, and P I

e,1,[2], P
II
e,1,[2], be the true Type-I and

Type-II error probabilities of the advisor and those as per-
ceived by the learner, respectively. Further, let P Ih

e,2, P
IIh
e,2 be

the error probabilities of the learner upon observing Ĥ1 = h.
Let the learner’s posterior upon observing Ĥ1 = h be

qh2 , and let the corresponding decision threshold be λh2 =
λ(qh2 , σ

2
2). The posterior probabilities satisfy

q02
1− q02

=
q2

1− q2

1− P I
e,1,[2]

P II
e,1,[2]

,
q12

1− q12
=

q2
1− q2

P I
e,1,[2]

1− P II
e,1,[2]

.

The optimal beliefs of advisor and learner q∗1 , q
∗
2 that min-

imizeR2, are obtained by solving dR2

dq1
= dR2

dq2
= 0. From [3],

the optimal belief of the advisor satisfies

q∗1
1− q∗1

=
p0

1− p0
P I1
e,2 − P

I0
e,2

P II0
e,2 − P

II1
e,2

. (2)

From (2), we observe some properties of q∗1 , q
∗
2 .

Theorem 2. For any σ2
1 and σ2

2 , q∗1 and q∗2 satisfy:

1. q∗1 ≤ p0 if and only if q∗2 ≥ c01
c01+c10

, with equality for
q∗2 = c01

c01+c10
.

2. p0 = q∗1 = q∗2 if and only if p0 ∈
{
0, c01

c01+c10
, 1
}

.

Thm. 2 highlights the fact that if the learner believes the
null hypothesis is more likely, then the ideal advisor un-
derweights the prior, and vice versa. Additionally, for p0
near zero (near one) the optimal advisor overweights (under-
weights) the prior. Proof is omitted due to space limitation.

In particular, let us consider two cases separately. First,
let the advisor have more expertise, i.e., σ2

1 < σ2
2 . Then the

curves for optimal beliefs and the corresponding Bayes risk
are as shown in Fig. 1. The behavior here is similar to the
case with equal expertise [3], indicating that the additional
expertise of the advisor does not alter the overall behaviors of
beliefs, as the learner is unaware of this improved expertise.

On the other hand, when the learner has more expertise,
i.e., σ2

1 > σ2
2 , we notice that the nature of curves changes, as

shown in Fig. 2. The behavior of the ideal agents indicates
that when the advisor has significantly less expertise than the
learner, the learner stays open-minded.
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Fig. 1: Optimal beliefs as compared to Prelec-weighted be-
liefs when the advisor has more expertise.
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Fig. 2: Optimal beliefs as compared to Prelec-weighted be-
liefs when the learner has more expertise.

To discuss the Prelec function in social learning, we ap-
proximate the optimal belief q∗n by the Prelec function. We
first restrict to the Prelec family whose fixed point is identical
with p∗ = c10

c01+c10
and then find best parameters (αn, βn) in

the minimax absolute error sense, i.e., pick (αn, βn) such that

min
α,β

max
p0
|q∗n(p0)− exp(−β(− log p0)

α)|,

with fixed point at p∗. Such Prelec functions (q1,Pre, q2,Pre)
result in corresponding Bayes risk R2,Pre.

The Prelec quantities are shown in dotted lines in Figs. 1
and 2. When the advisor has more expertise as in Fig. 1, while
the fit belief is not perfect, the Bayes risk does not increase by
much. Compared to the trivial beliefs p0 = q1 = q2 and its
maximal loss maxp0(R2,tri − R2,min) ≈ 0.0039 (not shown
in Fig. 1), the best Prelec curves improve the loss ≈ 0.0009.
The optimal Prelec-weighted agents also mimic the overall
behavior of the ideal agents.

On the other hand, when the learner has more expertise
as in Fig. 2, the Prelec agents do not accurately mimic the

optimal agents. Recall that the Prelec function is always in-
creasing and has only one crossing with unit slope line in
(0, 1). Therefore, the Prelec function fails to account for all
the variations in the optimal belief. Moreover, while the loss
of Bayes risk by the Prelec fitting is ≈ 0.0187, the loss of
trivial reweighting p0 = q1 = q2 is ≈ 0.0060. This indicates
that even though the Prelec weighting functions serve as good
approximations with expert advisors, they do not model the
optimal behavior in the case of poor advisors.

In addition, q∗1 has multiple crossings with p0, i.e.,
q∗2 = c01/(c01 + c10). As expected, the ideal advisor is
open-minded for near zero and one prior probabilities. How-
ever, when the hypotheses have Bayes risk around its peak,
the ideal advisor chooses to favor the likely hypothesis. That
is, around p∗, the learner stays open-minded as the decisions
of the advisor are less accurate. To further understand the
nature of such an advisor, we characterize the crossings of
the curve with the prior. The complementary cumulative
distribution function of the standard Gaussian is denoted by
Q(x).

Theorem 3. The set of all p0 such that q∗1 = p0, q∗2 = c01
c01+c10

is given by the solutions to

ex = 1−βQ(α+x)
1−βQ(α−x) , (3)

where

x = log
(

c10p0
c01(1−p0)

)
, α = 1

2σ2
1
, β =

Q(1/2σ2
2)

Q(−1/2σ2
2)
.

We note that p∗ = c01
c01+c10

is always a solution to (3). We
are particularly interested in when it has multiple solutions.

Corollary 4. If

2β
N (α; 0, 1)

1− βQ(α)
> 1, (4)

then, (3) has at least 3 solutions in (0, 1).

Cor. 4 provides sufficient conditions on the expertise of
agents under which there exists multiple crossings of the
curves q∗1(p0) and p0. This is important as the crossings indi-
cate a change in the perceived bias by the advisor. We omits
proofs for Thm. 3 and Cor. 4 due to space limitation.

4. TEAM CONSTRUCTION CRITERION

Having studied the mathematical conditions for optimal
reweighting of prior probabilities, we now investigate team
selection for social learning. Naturally, a social planner who
is aware of the context p0 can pick the optimal agent pairs
to minimize Bayes risk. However, it is not clear if agents
are capable of organizing themselves into ideal teams in the
absence of contextual knowledge. Thus, we now identify the
criterion for the learner to identify the optimal advisors when
a set of advisors is given. The proof of the next theorem is
omitted due to space limitation.
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(c) Context-unaware advisor selection. The
learner chooses advisor using (6) without p0
and the Bayes risk increases as a result.

Fig. 3: Context unaware team selection.

Theorem 5. Consider two advisors with q1 < q1′ . Let λ1, λ1′
be the decision thresholds of the respective advisors. Then,
the advisor with belief q1 is the optimal choice if and only if

P1

[
Y1 ∈ [λ1, λ1′ ], Y2 ∈ [λ12, λ

0
2]
]

P0 [Y1 ∈ [λ1, λ1′ ], Y2 ∈ [λ12, λ
0
2]]
≥ c10p0
c01(1− p0)

. (5)

In other words, by rewriting (5) as a likelihood form,

L
[
Ĥ1 = Ĥ2 = 1, Ĥ1′ = Ĥ2′ = 0

]
≥ c10p0
c01(1− p0)

,

where Ĥ2′ is the decision made by the learner following the
decision of the advisor with belief q1′ .

Thus selecting an ideal advisor requires a social planner
who is aware of the context p0. Without this, the learner
selects an advisor according to his personal belief q2. That
is, the learner verifies condition (5) by replacing p0 by q2.
Such a choice of advisor might not always conform to the
optimal choice when the belief of the learner deviates signif-
icantly from the prior. To illustrate, we consider the prob-
lem of choosing between two advisors with belief q1(p0) =
q∗1(p0) and q1′(p0) = p0. Let q(p0, q2) be the belief of the
optimal advisor choice for a given pair (p0, q2). We identify
the region of correct selection by shading, S = {(p0, q2) :
q(p0, q2) = q(q2, q2)}.

First, when expertise levels are equal, the region in which
the learner picks the correct advisor is shown in Fig. 3a. We
note that the correct region is relatively small and does not in-
clude q∗2 . In particular, the learner with optimal belief chooses
the wrong advisor always, whereas a suboptimal learner with
beliefs in the shaded region picks the correct one.

On the other hand, when the learner has more expertise
than the advisor, the corresponding region is as shown in
Fig. 3b. Here we note that the learner with optimal belief
picks the correct advisor always.

Thus, we note that knowledge of the mathematically opti-
mal beliefs does not guarantee selection of the right advisor.

Further, we also observe that the diversity of expertise lev-
els may increase the feasibility of selecting the right advisor
when the learner has optimal belief.

We also explore the optimal choice of advisor for the
given optimal learner in the absence of knowledge of the
prior probability. From (2), the belief of the optimal advi-
sor, q̃1 chosen by a learner, in the absence of context (prior
probability p0) satisfies

q̃1
1− q̃1

=
p0

1− p0
P I1
e,2 − P

I0
e,2

P II0
e,2 − P

II1
e,2

. (6)

The learner’s behavior with belief q∗2 is as shown in Fig.
3c. We note that the advisor chosen by the learner differs from
the optimal choice. Further, it is also evident that this choice
consequently results in an increased Bayes risk. Such behav-
ior in team selection highlights the significance of context and
thus a social planner for identifying the right team.

5. CONCLUSION

We considered the problem of sequential social learning un-
der varying agent expertise and investigated the question of
optimal probability reweighting in systems with two agents—
advisor and learner.

Under specific levels of expertise, we showed that the Pr-
elec reweighting function approximates the behavior of the
optimal beliefs of the agents, however when the learner has
much more expertise, the behavior of the optimal agents is
inverted as the learner becomes open-minded about the prob-
lem. In this case, the Prelec reweighting function fails to cap-
ture all the behavioral traits of the optimal beliefs.

Finally, we considered the ability of agents to organize
themselves into optimal teams, and showed that in the ab-
sence of a social planner, the learner can get paired with the
wrong advisor when the individual belief deviates signifi-
cantly from the underlying prior value.
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