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ABSTRACT
The emerging paradigm of Human-Machine Inference
Networks (HuMaINs) combines complementary cogni-
tive strengths of humans and machines in an intelligent
manner to tackle various inference tasks and achieves
higher performance than either humans or machines by
themselves. While inference performance optimization
techniques for human-only or sensor-only networks are
quite mature, HuMaINs require novel signal processing
and machine learning solutions. In this paper, we present
an overview of the HuMaINs architecture with a focus
on three main issues that include architecture design, in-
ference algorithms including security/privacy challenges,
and application areas/use cases.

Index Terms— human-in-the-loop systems, behav-
ioral signal processing, self-driving cars, health care in-
formatics, intelligent tutoring systems

1. INTRODUCTION

In traditional economics, cognitive psychology, and ar-
tificial intelligence (AI) literature, the problem-solving
or inference process is described in terms of searching
a problem space, which consists of various states of the
problem, starting with the initial state and ending at the
goal state which one would like to reach [1]. Each path
from the initial state represents a possible strategy which
can be used. These paths could either lead to the desired
goal state or to other non-goal states. The paths from the
initial state that lead to the goal state are called the solu-
tion paths. There could be multiple such paths between
the initial and the goal state which are all solutions to the
problem. In other words, there are multiple ways to solve
a given problem. The problem-solving process is to iden-
tify the optimal (under a given constraint) solution path
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among the multiple solution paths emanating from the
initial state and reaching the goal state.

The first step for such a search is to determine the set
of available strategies, i.e., the strategy space. The sec-
ond step is to evaluate the strategies to determine the best
strategy as the solution. In traditional economic theory,
a rational decision maker is assumed to have the knowl-
edge of the set of possible alternatives1, has the capabil-
ity to evaluate the consequences of each alternative, and
has a utility function which he/she tries to maximize to
determine the optimal strategy [2]. However, it is widely
accepted that humans are not rational but are bounded ra-
tional agents. Under the bounded rationality framework
[2, 3], decision makers are cognitively limited and have
limited time, limited information, and limited resources.
The set of alternatives is not completely known a priori
nor are the decision makers perfectly aware of the conse-
quences of choosing a particular alternative. Therefore,
the decision maker might not always determine the best
strategy for solving the problem.

On the other hand, machines2 are rational in the sense
that they have stronger/larger memory for storing alterna-
tives and have the computational capability to more ac-
curately evaluate the consequences of a particular alter-
native. Therefore, a machine can aid a human in fast and
accurate problem-solving. This leads us to a framework
for human-machine collaboration for problem-solving.
In this paper, we discuss this collaboration framework
for inference by defining the Human-Machine Inference
Networks (HuMaINs) and discuss the research challenges
associated with developing such a framework. The three
basic threads of research in this area are defined.

2. HUMAIN FRAMEWORK

Fig. 1 presents a typical Human-Machine Inference Net-
work (HuMaIN). A typical HuMaIN consists of a so-

1The terms strategy and alternative are used interchangeably.
2The terms sensor and machine are used interchangeably.
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cial network where humans exchange subjective opinions
among themselves, and a machine network where ma-
chines exchange objective measurements amongst them.
Moreover, due to the interaction between social and ma-
chine networks, the behavioral characteristics of humans
determine algorithms adopted by machines and these al-
gorithms in turn affect the behavior of humans. There-
fore, an intelligent collaboration of humans and machines
can deliver improved results, by exploiting the strengths
of humans and machines.

Social Network Interaction Sensor Network Interaction

Human-Machine Inference Network

Subjective 
Opinions

Objective 
MeasurementsAlgorithm Design

Behavioral Change

Fig. 1. Notional HuMaINs architecture

There are three major directions of research that fall
under the HuMaIN paradigm: 1) architecture, 2) algo-
rithms, and 3) applications.

3. ARCHITECTURE

Several control architectures involve the interaction of an
autonomous system with one or more human agents. Ex-
amples of such architecture include fly-by-wire aircraft
control systems (interacting with a pilot), automobiles
with driver assistance systems (interacting with a driver),
and medical devices (interacting with a doctor, nurse, or
patient) [4]. The success of such architecture depends
not only on the autonomous system, but also on the ac-
tions of the human agents. The goal is to develop a hu-
man decision-making framework that quantifies the hu-
man representation in the decision-making task under un-
certainty, and also develop an estimator for the model pa-
rameters. The framework should also provide a common
ontology for humans and machines to share relevant in-
formation about the task. By estimating the parameters,
a machine can access this representation and potentially
improve its performance. In control systems terminol-
ogy, the model and associated estimator should form a
plant-observer pair for human decision making that can
be used for system design [5]. Incorporating these ideas
into the feedback control framework will require new re-
sults and theory to provide performance guarantees.

We classify the architectures into three categories:
1) architectures where humans directly control the au-

tonomous system, 2) architectures where the autonomous
system monitors humans and takes actions if required,
and 3) a combination of 1 and 2. In order to achieve
the goal of HuMaINs, it is critical to build an architec-
ture that lends itself to a blend of human and machine
decision making. In [6], it is stated that to create a state-
of-the-art operator environment for modern automation
systems, continued technology development is needed in
three major areas: decision support tools; ergonomics
and visualization technologies; and ease-of-use of com-
plex systems. Research focusing on building such sys-
tems falls under the research paradigm of Human-in-the-
loop cyber-physical system (HiLCPS) [7]. As Schirner
et al. [7] state, designing and implementing a HiLCPS
poses challenges that requires multi-disciplinary research
to solve these challenges. Research in the areas of con-
trol systems, human-computer interface (HCI), and sys-
tems design, together will drive the design of a HuMaIN
architecture.

4. ALGORITHMS

The key research area for HuMaINs is the development
of new algorithms that deal with the human-behavioral
data. This falls under the paradigm of an emerging re-
search area called behavioral signal processing [8]. Be-
havioral Signal Processing (BSP) deals with human be-
havioral signals. It is defined as processing of human ac-
tion and behavior data for meaningful analysis to ensure
timely decision making and intervention (action) by col-
laborative integration of human expertise with automated
processing. The goal is to support and not supplant hu-
mans [8]. The core elements include quantitative under-
standing of human behavior and mathematical modeling
of interaction dynamics. Narayan and Georgiou describe
the elements of BSP by using speech and spoken lan-
guage communication for measuring and modeling hu-
man behavior [8].

Observe human 
behavior

Build behavioral 
models

(Re)Design 
human-machine 

systems

Fig. 2. General approach for the design and analysis of
HuMaINs.

There are two specific research directions while de-
veloping BSP algorithms for HuMaINs:
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1. Develop mathematical models of human decision
making using statistical modeling techniques, in
close collaboration with cognitive psychologists,
and

2. Design robust fusion algorithms that handle unreli-
able data from the agents as modeled by the above
developed models.

These problems have both theoretical and implementa-
tion challenges. Both these research problems are further
discussed in some detail below.

4.1. Statistical Modeling of Human Behavior

The first step towards developing efficient systems con-
taining humans and machines is to develop appropriate
models that characterize their behavior. While statistical
models exist that characterize the machine observations,
researchers have not extensively investigated the mod-
eling of decisions and subjective confidences on multi-
hypothesis tasks, or on tasks in which human decision
makers can provide imprecise (i.e., vague) decisions. Both
of these task types, however, are important in the many
applications of HuMaINs. In the preliminary work [9], a
comparative study between people and machines for the
task of decision fusion has been performed. It was ob-
served that the behavior between people and machines
is different since the optimal fusion rule is a determinis-
tic one while people typically use non-deterministic rules
which depend on various factors. Based on these obser-
vations, a hierarchical Bayesian model was developed to
address the observed behavior of humans. This model
captured the differences observed in people at individ-
ual level, crowd level, and population level. Moving
forward, for individual human decision-making models,
tools from bounded rationality framework [3] and ratio-
nal inattention theory [10] can be used in building a the-
ory. Experiments with human subjects can be designed to
model the cognitive mechanisms which govern the gen-
eration of decisions and decision confidences as they per-
tain to the formulation of precise and imprecise deci-
sions. One can also build models that consider the ef-
fect of stress, anxiety, and fatigue in the cognitive mech-
anisms of human decision making, decision confidence
assessment, and response time (similar to [11, 12]).

4.2. Design of Robust Algorithms

The next step after deriving probabilistic models of hu-
man decision-making, is to develop efficient fusion al-
gorithms for collaborative decision making. The goal
would be to seek optimal or near-optimal fusion rules
which incorporate the informational nature of both hu-
mans and machines. Due to the large volume of data

in some practical applications, it is also of interest to
analyze the effects that a large number of agents (hu-
mans/machines) and a high rate of incoming data have on
the performance of the fusion rules. However, the highly
parameterized nature of these human models might deem
their implementation impractical. Also, the presence of
unreliable components in the system might result in poor
fusion performance. Data from existing studies in the
cognitive psychology literature along with models result-
ing from the work in Sec. 4.1 can be used in the analysis
of these operators. For cases in which the implemen-
tation of the optimal rule is not feasible, one must in-
vestigate the use of adaptive fusion rules that attempt to
learn the parameters of the optimal fusion rule online.
Also, for the design of simple and robust algorithms,
ideas from coding theory can be used similar to the re-
liable crowdsourcing results such as in [13].

For the development of future systems consisting of
humans and machines, the methodology described above
needs to be implemented. First, statistical models of hu-
mans should be developed, which are then used to opti-
mize the machines in the system. Due to the presence of
potential unreliable agents, one has to also take into con-
sideration the robustness of the systems while developing
such large-scale systems. For example, [13–15] demon-
strated the utility of statistical learning techniques and
tools from coding theory to achieve reliable performance
from unreliable agents.

5. APPLICATIONS

Another major driver for the development of large-scale
HuMaINs is the application areas. Each application area
that deals with human-machine collaboration has its own
specific nuances that drive the architecture and algorith-
mic solutions. In this paper, we discuss four extremely
important and timely application areas: education, au-
tonomous vehicles, health-care, and science. We discuss
their associated research problems in the context of Hu-
MaINs.

5.1. Education

Human-in-the-loop system can have a significant impact
in education domain. The research field of Intelligent
Tutoring Systems (ITS) is attempting to design computer
systems that can provide immediate and customized in-
struction or feedback to learners, with intervention from
a human teacher. They are enabled to serve as comple-
menting a human teacher and ensure personalized and
adaptive learning at scale to every learner. While ITS re-
search has been active for several decades [16,17], recent
advancements in AI and big data research has enabled in-
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creasingly more human-like interactions with computers
giving rise to interactive, engaging, and immersive tutor-
ing systems. A typical ITS consists of four basic compo-
nents [18, 19]: Domain model, Student model, Tutoring
model, and User interface model. The Domain Model
contains the skills, concepts, rules, and/or problem-solving
strategies of the domain to be learned. The Student/Learner
Model is an overlay on the domain model and it models
the student’s cognitive and affective understanding of the
domain and their evolution during the learning process.
The tutor model represents the tutoring strategies and ac-
tions that are dependent on the domain model and the
specific learner. The user interface component integrates
the other three to ensure interaction with the user and
learning advances as planned.

With respect to the HuMaIN paradigm discussed in
Sec. 2, the domain model represents the task or goal of a
HuMaIN, research on the user/learner model represents
the human aspect of HuMaINs and modeling human be-
havior, the tutoring model represents the machine aspect
of HuMaINs and designing of robust inference algorithms,
and the user interface model represents the architectural
research of designing HuMaINs.

5.2. Autonomous Vehicles

Detection, localization, control, and path planning are es-
sential components of autonomous vehicle design [20,
21]. These tasks focus on sensing and interacting with
the physical world through sensors and actuators. Al-
though, autonomous vehicles can be a game changer, there
are still many obstacles holding back their deployment
in practice. Autonomous nature of these systems make
them quite vulnerable to cyber-attacks. A solution is to
employ human-in-the-loop systems (semi-autonomous driv-
ing) for safe and intelligent autonomous vehicle oper-
ation. Such systems would require joint environment-
driver state sensing, inference, and shared control and
new metrics to characterize safety. The measures of sys-
tem safety should take into account human performance
in response to unexpected hazardous events, and human
decision making during vehicle malfunctions caused by
cyber-attacks. Furthermore, allowing communication among
multiple self-driving cars can enable collective intelli-
gence in such systems, however, would require the de-
sign of robust communication protocols.

5.3. Health Informatics

Automated inference using machine learning (ML) for
healthcare holds enormous potential to increase quality,
efficacy and efficiency of treatment and care [22]. Au-
tomatic approaches greatly benefit from big data with
many training samples. Several tasks in medical domain

have high dimensional complex data, where the inclu-
sion of a human is impossible and ML shows impressive
results. On the other hand, for certain tasks one is con-
fronted with a small number of data sets or rare events,
where ML-approaches suffer from insufficient training
samples. Furthermore, in healthcare, decisions made by
machines can have serious consequences and necessitate
the incorporation of human experts’ domain knowledge.
There is also a growing trend of litigation requiring the
need to bring human in the loop. This makes doctor-in-
the-loop systems to be a perfect candidate for healthcare.
Designing such systems would require devising ML ap-
proaches that can interact with human agents (doctors)
and can optimize their learning behavior through these
interactions. Furthermore, unlike current black-box like
ML approaches, we need interpretable ML models for
healthcare so that these systems can become transparent
to earn experts’ trust and be adopted in their workflow.

5.4. Scientific Discovery

Scientific research spans problems and challenges rang-
ing from screening of novel materials with desired per-
formance in material science, optimizing the analysis of
the Higgs boson in high energy physics, tracking of ex-
treme weather phenomena in climate science. Currently,
the role of machines in accelerating science has been lim-
ited to solving a well-defined task where the data and
techniques are given to them by the scientists. This limits
our ability to tackle problems where not only the com-
plexity of the data but the questions and the tasks it-
self challenge our human capabilities to make discover-
ies [23]. HuMaINs can play an important role in sci-
entific research, and become crucial as more interdisci-
plinary science questions are tackled. This would require
advancing machine learning techniques to do indepen-
dent inquiry, proactive learning, and deliberative reason-
ing in the presence of hypotheses, domain knowledge,
and insights provided by the scientists.

6. CONCLUSION

In this paper, we presented an overview of human ma-
chine inference networks. Specific attention was paid to
three main issues: 1) architecture design, 2) inference al-
gorithms, and 3) application areas. A holistic research
initiative across these issues is needed to empower this
new field of HuMaIN research. Also, moving forward,
the social aspect of HuMaINs, with multiple human and
machine components interacting, such as in IoT systems
is a direction for future research.

6964



7. REFERENCES

[1] J. R. Anderson, Cognitive Psychology and Its Im-
plications. New York: Worth Publishers, 2010.

[2] J. G. March and H. A. Simon, Organizations. New
York: Wiley, 1958.

[3] H. A. Simon, Models of Bounded Rationality: Em-
pirically Grounded Economic Reason. Cam-
bridge: MIT Press, 1982.

[4] W. Li, D. Sadigh, S. S. Sastry, and S. A. Seshia,
“Synthesis for human-in-the-loop control systems,”
in tacas2014, Apr. 2014, pp. 470–484.

[5] P. B. Reverdy, “Human-inspired algorithms for
search: A framework for human-machine multi-
armed bandit problems,” Ph.D. dissertation, Prince-
ton University, 2014.

[6] J. Pretlove and C. Skourup, “Human in the loop,”
ABB Review, vol. 1, pp. 6–10, 2007.

[7] G. Schirner, D. Erdogmus, K. Chowdhury, and
T. Padir, “The future of human-in-the-loop cyber-
physical systems,” IEEE Computer, vol. 46, no. 1,
pp. 36–45, Jan. 2013.

[8] S. Narayanan and P. G. Georgiou, “Behavioral sig-
nal processing: Deriving human behavioral infor-
matics from speech and language,” Proc. IEEE, vol.
101, no. 5, pp. 1203–1233, Feb. 2013.

[9] A. Vempaty, L. R. Varshney, G. J. Koop, A. H.
Criss, and P. K. Varshney, “Decision fusion by peo-
ple: Experiments, models, and sociotechnical sys-
tem design,” in Proc. 3rd IEEE Global Conf. Signal
Inf. Process. (GlobalSIP 2015), Dec. 2015, pp. 1–5.

[10] C. A. Sims, “Implications of rational inattention,”
J. Monet. Econ., vol. 50, no. 3, pp. 665–690, Apr.
2003.

[11] C. N. White, R. Ratcliff, M. W. Vasey, and G. McK-
oon, “Anxiety enhances threat processing without
competition among multiple inputs: A diffusion
model analysis,” Emotion, vol. 10, no. 5, pp. 662–
677, Oct. 2010.

[12] R. Ratcliff and H. P. A. van Dongen, “Diffusion
model for one-choice reaction-time tasks and the
cognitive effects of sleep deprivation,” Proc. Natl.
Acad. Sci. U.S.A., vol. 108, no. 27, pp. 11 285–
11 290, Jul. 2011.

[13] A. Vempaty, L. R. Varshney, and P. K. Varshney,
“Reliable crowdsourcing for multi-class labeling
using coding theory,” IEEE J. Sel. Topics Signal
Process., vol. 8, no. 4, pp. 667–679, Aug. 2014.

[14] A. Vempaty, Y. S. Han, and P. K. Varshney, “Target
localization in wireless sensor networks using error
correcting codes,” IEEE Trans. Inf. Theory, vol. 60,
no. 1, pp. 697–712, Jan. 2014.

[15] B. Kailkhura, A. Vempaty, and P. K. Varshney,
“Distributed inference in tree networks using cod-
ing theory,” IEEE Trans. Signal Process., vol. 63,
no. 14, pp. 3715–3726, Jul. 15 2015.

[16] J. R. Anderson, C. F. Boyle, and B. J. Reiser, “In-
telligent tutoring systems,” Science, vol. 228, no.
4698, pp. 456–462, Apr. 1985.

[17] A. T. Corbett, K. R. Koedinger, and J. R. Ander-
son, “Intelligent tutoring systems,” in Handbook of
Human-Computer Interaction, M. Helander, T. K.
Landauer, and P. Prabhu, Eds. Elsevier Science B.
V., 1997, pp. 849–874.

[18] H. S. Nwana, “Intelligent tutoring systems: an
overview,” Artif. Intell. Rev., vol. 4, no. 4, pp. 251–
277, 1990.

[19] R. Nkambou, R. Mizoguchi, and J. Bourdeau, Ad-
vances in intelligent tutoring systems. Heidelberg:
Springer Science & Business Media, 2010.

[20] J. Levinson, J. Askeland, J. Becker, J. Dolson,
D. Held, S. Kammel, J. Z. Kolter, D. Langer,
O. Pink, V. Pratt, M. Sokolsky, G. Stanek,
D. Stavens, A. Teichman, M. Werling, and
S. Thrun, “Towards fully autonomous driving: Sys-
tems and algorithms,” in Proc. 2011 IEEE Intell.
Veh. Symp. (IV), Jun. 2011, pp. 163–168.

[21] R. Vivacqua, R. Vassallo, and F. Martins, “A low
cost sensors approach for accurate vehicle localiza-
tion and autonomous driving application,” Sensors,
vol. 17, no. 10, pp. 1–33, Oct. 2017.

[22] W. Raghupathi and V. Raghupathi, “Big data ana-
lytics in healthcare: promise and potential,” Health
Inf. Science Syst., vol. 2, no. 1, pp. 1–10, Feb. 2014.

[23] Y. Gil, “Thoughtful artificial intelligence: Forging a
new partnership for data science and scientific dis-

covery,” Data Science, no. Preprint, pp. 1–11.

6965


