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ABSTRACT

This paper proposes a reliable and self-adaptive operating
system management policy for CCTV-based security ap-
plications which controls arrival image compression rates.
After receiving image sequences via CCTV cameras, the
system enqueues the sequences of images and processes
them for face recognition. High compression rates in CCTV-
recorded images provide low recognition performance due
to quantization while it is beneficial in terms of queue sta-
bility. On the other hand, low compression rates in the
images provide high recognition performance while it may
introduce queue overflows. Therefore, this paper designs a
queue-aware self-adaptive reliable operating system manage-
ment scheme which aims at face identification performance
maximization while avoiding queue overflow by controlling
CCTV-recorded image compression rates based on the theory
of Lyapunov optimization.

Index Terms— Surveillance Monitoring, Camera Net-
works, Lyapunov Optimization, Stochastic Optimization

1. INTRODUCTION

Every single day, brand-new machine learning and deep
learning algorithms have been investigated in many computer
science research areas such as computer vision, wireless
networks, embedded and operating systems, and big-data
information processing [1, 2]. The proposed learning algo-
rithms obviously present excellent performances in terms of
their own objectives, i.e., maximization of recognition accu-
racy. However, they can be quite computationally expensive
to be operated in performance-limited computer systems such
as mobile smartphone devices. Therefore, in the viewpoints
of systems engineers, it is crucial to think about system-level
supports for computation-rich learning algorithms.

This paper designs CCTV-equipped computer vision em-
bedded system platforms which reliably conducts face identi-
fication where the reliability is defined as the avoidance of
system queue overflow due to large computation delays in
data-intensive applications [3, 4, 5, 6, 7, 8].

Our considering platform is equipped with multiple
CCTYV cameras which individually compress recorded digital
images in real-time and conducts face identification. If the
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Fig. 1: Reference System Model

image compression rate is low (which is good for identify-
ing fast moving human faces), it introduces delays due to
large number of frames. This occurs queue-overflow that
is obviously system-unstable (i.e., tradeoff between stability
and identification performance). Thus, a new system-support
algorithm which aims at time-average face identification per-
formance maximization subject to system reliability under
the concept of Lyapunov optimization framework.

This paper is organized as follows: Section 2 and 3
present the preliminary knowledge and the proposed time-
average optimization for self-adaptive CCTV-based security
applications. The performance evaluation results and conclu-
sions are presented in Section 4 and 5, respectively.

2. PRELIMINARIES

2.1. Reference Network Model

Our considering system model for self-adaptive face recogni-
tion operating systems is shown in Fig. 1. As illustrated in
Fig. 1, multiple CCTV cameras exist for surveillance mon-
itoring. In each camera, the recorded analog signals will be
converted to digital, and then, certain amounts of compression
will conduct for high-speed real-time data communications;
and the individual compression ratios will be determined by
self-adaptive control for reliable systems component.
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As presented in Fig. 1, multiple CCTV cameras are con-
nected to self-adaptive control for reliable systems compo-
nent. If the queue-backlog is large in system queue/buffer
(Q[t] in Fig. 1), having less compression in incoming im-
ages via multiple cameras is harmful because it can introduce
queue-overflow. Therefore, high image compression rates are
desired in this case. On the other hand, if the queue is idle,
having less compression can be utilized for enhancing face
recognition accuracy. Notice that high compression in im-
ages definitely introduces less recognition accuracy. Finally,
the self-adaptive control for reliable systems component de-
termines the amounts of bitrates from all connected multiple
CCTYV cameras.

The actual face recognition conducted in face recognition
systems. It consists of two stages, i.e., image-preprocessing
and deep neural network. The image-preprocessing is for ma-
nipulating input image streams for learning; and it consists
of four steps, i.e., input image loading, detect face region,
transformation, and crop (i.e., removing backgrounds and ex-
tracting only face regions). After that, deep neural network is
used for identifying the people on the images.

2.2. Time-Average Optimization with Lyapunov Drifts

The theory of stochastic network optimization aims at time-
average utility optimization while achieving queue/system
stability when the tradeoff relationship exists between ob-
jective function and queue stability. In the time-average
stochastic optimization formulation, the concept of Lyapunov
control theory is utilized for the modeling of queue stabil-
ity [9]. According to the theory, it takes the minimum of the
Lyapunov drift leads to the queue stability while pursuing
the minimization of the time-average objective function. By
taking a control action to minimize the both of time-average
objective and Lyapunov drift in each unit time, time-average
optimization can be obtained with the gap of O(1/V) from
optimality while satisfying queue stability and a time-average
queue backlog bound of O(V') where V' is defined as a trade-
off factor between utility and stability.

More details about the theory of stochastic optimization
with Lyapunov control, named to drift-plus-penalty (DPP) al-
gorithm, are presented in [9]. In addition, the various appli-
cations of the theory are summarized in Section 2.3.

2.3. Related Work

As well-discussed in Section 2.2, the Lyapunov optimiza-
tion based DPP algorithm which is based on stochastic net-
work optimization (time-average utility function optimization
while achieving queue stability) is scalable, and thus there
exit a lot of applications for the DPP algorithm as follows:

e Video Applications: J. Kim, et. al. [10] proposed an algo-
rithm for time-average video streaming quality maximiza-
tion subject to transmission queue stability in device-to-

device (D2D) video delivery. The corresponding Android
software implementation is also demonstrated in [11]. J.
Koo, et. al. [12] proposed a dynamic adaptive stream-
ing over HTTP (DASH) algorithm for time-average video
streaming quality maximization under the consideration
of energy status, LTE data quota, and transmission queue
stability in integrated LTE/WiFi networks.

o Communications Applications: M. J. Neely, et. al. [13]
designed an energy-efficient multi-hop routing which is
for time-average energy consumption minimization sub-
ject to node queue stability. Its corresponding practical
implementation was presented and discussed in [14].

e Surveillance Applications: Y. J. Mo, et. al. [15] illustrated
parallel machine learning systems for CCTV-base secu-
rity applications with single CCTV camera. In the system,
multiple artificial neural network (ANN) frameworks ex-
ist; and each ANN is with its own configurations; and it
has tradeoff between complexity and performance. There-
fore, the proposed algorithm adaptively selects an ANN
depending on queue-backlog for time-average recognition
accuracy maximization subject to CCTV queue stability.
D. Kim, et. al. [16] illustrated face identification ma-
chine learning architectures for CCTV-base security ap-
plications with single CCTV camera. In stead of hav-
ing multiple ANN frameworks, this architecture has one
learning software system (based on OpenFace software
library) and controls the sampling rates of CCTV cam-
era. Therefore, the proposed algorithm dynamically con-
trols sampling rates for time-average recognition accuracy
maximization subject to CCTV queue stability.

In this paper, our proposed algorithm controls the com-
pression rates in multiple CCTV cameras while maximizing
time-average recognition accuracy maximization subject to
stability for surveillance monitoring applications. Comparing
to the previous single CCTV dynamic algorithms [15, 16],
the proposed algorithm in this paper additionally controls the
multi-camera scheduling and coordination.

3. STOCHASTIC ADAPTATION FOR
SELF-ADAPTIVE CCTV SYSTEMS

3.1. Algorithm Overview
The proposed algorithm in this paper consists of two stages:

e Stochastic Compression Rate Adaptation (Stage 1): This
stage controls bitrates from all CCTV cameras for time-
average face-identification accuracy maximization subject
to queue stability. More details are in Section 3.2.1.

e Multi-Camera Scheduling and Coordination (Stage 2):
After computing the amount of time-average optimal bi-
trate, the compression rates of individual CCTV cameras
and their corresponding coordination will be determined
in this stage. More details are in Section 3.2.2.
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3.2. Proposed Two-Stage Algorithm
3.2.1. Stage I: Stochastic Compression Rate Adaptation

This section describes how we model the amount of time-
average optimal bitrate using the Lyapunov optimization [9].
Based on the obtained bitrate value in this stage, the com-
pression ratio values in individual multi-CCTV cameras are
determined in the next stage (refer to Section 3.2.2).

We first model the queue dynamics as follows [9]:

Q(t + 1) = max{Q(t) — u(t), 0} + A®), (1

where Q(t), u(t), and A(¢) respectively denote the queue-
backlog size (and Q(0) = 0), the number of images departing
from the queue, and the number of images arriving in the
queue (departure images from face recognition systems in
Fig. 1). As shown in Fig. 1, the arrived images into face
recognition systems is equivalent to the images which are
leaving from the system because we identify the faces from
the images and we are not manipulating the images at all.
Therefore, the A(t) in (1) is equivalent to the bitrate from
all connected cameras. It represents the fact that we have to
compute the A(t) in (1) which can maximize time-average
identification accuracy performance subject to stability.

We then formulate the mathematical program for maxi-
mizing the time-average face identification accuracy perfor-
mance P(A(t)) where given bitrate is A(t) can be presented:

max : tlggo Zi;lo P(X(7)) )

and queue stability constraint: lim;_, + Zt;:lo Q) < 0.
According to the Lyapunov optimization theory based

DPP algorithm [9], this program can be re-formulated as

following where A*(t) is time-average optimal bitrate:

argmaxaea {V - POND) — Q) - A} ()

where A\*(t) is optimal bitrate for time-average identification
accuracy maximization subject to stability, A is the set of all
possible bitrates, and V' is the tradeoff coefficient between
performance and stability, respectively.

Semantically, this (3) can be evaluated as follows:

e Idle Queue Case: Suppose that Q(t) = 0. Based on (3),
A (t) <« arg max {V-P(A\(t))—0-AH)} &4
A(t)eA

= arg max V- P(A(1)) )
thus we have to choose A(t) which maximizes P(A(t)).
It is obvious that larger bitrate guarantees higher identifi-
cation accuracy. Therefore, P (A1 (t)) > P (A2(t)) when
A1 > Xo. Thus, itis finally true that A*(¢) will be the max-
imum value among the elements in the set of A. This is
semantically true because it is beneficial to select the max-
imum bitrate to maximize accuracy if the queue is idle.

o Busy Queue Case: Suppose that Q(t) ~ co. Based on (3),

A*(t) <+ arg max {V-P(A(t)) —oo-A(t)} (6)
A(t)eA
A~ arg )\Iél)iélj\ A(t) (7

thus we have to choose minimum A(t) among the ele-
ments of A. This is semantically true because it is benefi-
cial to select the minimum bitrate to avoid queue overflow
if the queue is almost near overflow.

Therefore, our proposed closed-form equation (3) should
be computed in each unit time after observing Q(t), and then
it can guarantee time-average identification accuracy maxi-
mization subject to stability. Based on this nature, our pro-
posed algorithm is self-adaptive because it can control its own
bitrates automatically. In addition, this algorithm is reliable
due to the fact that the self-adaptation is for maximizing its
utility while achieving stability.

3.2.2. Stage 2: Multi-Camera Scheduling and Coordination

After computing optimal bitrate at time ¢, i.e., \*(t), each
CCTV camera computes its own compression ratio. Suppose
that each CCTV camera and its corresponding compression
ratio at time ¢ are denoted by C = {cy,--- ,cx} and R £
{ri(t), - ,rn(t)}, respectively.

At time ¢, the entire bitrates (without compression) from
all CCTV cameras can be formulated as follows:

N

rw=y_ L @®)

when ;(t) is the recorded bitrate at CCTV camera ¢; € C.
Our policy works as follows:

o If I*(t) < A*(t), compression is not required. Then the
optimal compression ratio in each CCTV camera ¢; € C
can be denoted as follows:

r:(t)%Tz(t)?Vle{lv aN} (9)

o If I*(t) > A*(¢), proportional compression is utilized in
this paper which control compression ratios depending on
the image sizes in each CCTV camera, i.e.,

ri(t),vie{1,--- ,N} (10)

3.3. Pseudo-Code and Computational Complexity

The proposed algorithm in Section 3.2 (Stochastic Com-
pression Rate Adaptation) and Section 3.3 (Multi-Camera
Scheduling and Coordination) is presented in the form of
pseudo-code (Algorithm 1). As shown in Algorithm 1, the
Stage 1 and Stage 2 procedures are closed-form equation
solving. Thus, the proposed algorithm is polynomial-time.
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Algorithm 1 Proposed Two-Stage Algorithm

Initialize:

I:t+0

2: Q(t) + 0

3: Camera Set: C = {c1,--- ,cn}

4: Camera Ratio Set: R = {r1(t), -+ ,r~n(t)}
Stochastic Compression Rate Adaptation (Stage 1):
5: while ¢ < T do // T operation time

6: Observe Q(t)

7: T* + —o0

8: for A(t) € A do

9: T+ V-PA@1)—Q>)-At)
10: if 7 > T~ then

11: T T

12: A" (t) < A(t)

Multi-Camera Scheduling and Coordination (Stage 2):

130 I'(t) =, L)
14: it I*(t) < A*(t) then

15: ri(t) « ri(t),vie {1,--- ,N}
16: else
17: 2(t) « 28p(t),Vie {1,--- N}
. Ti T*(t) T4 y V1 ) ’
12000 T T T
mmm Dynamic Security-Level Control
- Max Security Algorithm (Fixed)
£ 10000 - Max Stability Algorithm (Fixed) 1
<
% 8000 .
=
2
2> 6000
=
<
@ 4000 4
£
L
2
& 2000
0 T n n ; T n :
0 50 100 150 200 250 300 350 400 450 500

Time (unit: unit time)

Fig. 2: Evaluation results (system stability).

4. PERFORMANCE EVALUATION

For evaluating the performance, we implemented the simula-
tor for self-adaptive face identification frameworks with Ten-
sorFlow software library. Then, we numerically measured the
tradeoff between recognition accuracy and computation time.
Based on the accuracy and computation time traces via Ten-
sorFlow scripts, we simulated our platform with random event
arrivals which is equivalent to the CCTV stream arrivals.
Based on the software implementation, the queue dy-
namics can be simulated as shown in Fig. 2. The simulation
results of the proposed stochastic algorithm (denoted by Dy-
namic Security-Level Control (DSLC) were compared with
the queue-backlog information of Max Security (MaxSec)
(which is for the minimization of multi-CCTV compression
ratios for maximum identification accuracy) and Max Stabil-
ity (MaxStab) (which is thr the maximization of multi-CCTV
compression ratios for queue stability). In this simulation-
based study, the proposed DSLC adaptively controls the
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Fig. 3: Evaluation results (recognition accuracy).

compression ratios in each CCTV camera in each unit time.
Fig. 2 shows that the MaxStab is extremely queue-stable
because of the maximum compression ratios in all CCTV
cameras for avoiding queue overflows. On the other hand, the
MaxSec is not system-stable at all times because of minimum
compression ratios in all CCTV cameras for achieving the
highest identification accuracy. The proposed DSLC shows
similar performance with MaxSec in initial times because the
queue-backlog is not too much to start the adaptive control;
as well as our main objective is the maximization of identifi-
cation accuracy. When the unit time meets 280, the proposed
DSLC starts to process bitrates from the queue for queue
stability by selecting optimal bitrates (in turn, compression
ratios in each CCTV cameras with proportional scheduling
and coordination) based on the queue-backlog information.
In Fig. 3, the recognition accuracy adaptation can be ob-
served. In this simulation, three frameworks are assumed thus
three different accuracy ratios are considered (84.4%, 90.0%,
and 95.6%). Our proposed two-stage stochastic algorithm
adapts the ratio depending on the backlog as shown in Fig. 3.

5. CONCLUDING REMARKS

This paper presents a self-adaptive face identification systems
for multi-CCTV based surveillance monitoring applications.
The proposed algorithm consists of two stages as follows: For
the first stage, the bitrates of all CCTV cameras are adaptively
determined based on Lyapunov optimization framework for
time-average identification accuracy maximization subject to
system queue stability. After time-average optimally com-
puting the bitrates of all connected multi-CCTV cameras,
proportional compression ratio scaling is utilized for multi-
CCTYV camera scheduling and coordination.
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