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ABSTRACT

Energy has been increasingly generated or collected by
different entities on the power grid (e.g., universities, hospi-
tals and households) via solar panels, wind turbines or local
generators in the past decade. With local energy, such elec-
tricity consumers can be considered as “microgrids” which
can simultaneously generate and consume energy. Some mi-
crogrids may have excessive energy that can be shared to
other power consumers on the grid. To this end, all the entities
have to share their local private information (e.g., their local
demand, local supply and power quality data) to each other or
a third-party to find and implement the optimal energy shar-
ing solution. However, such process is constrained by privacy
concerns raised by the microgrids. In this paper, we propose
a privacy preserving scheme for all the microgrids which can
securely implement their energy sharing against both semi-
honest and colluding adversaries. The proposed approach in-
cludes two secure communication protocols that can ensure
quantified privacy leakage and handle collusions.

1. INTRODUCTION

Energy has been increasingly generated or collected by dif-
ferent entities on the power grid (e.g., universities, hospitals
and households) via solar panels, wind turbines or local gen-
erators in the past decade. With local energy, such electric-
ity consumers can be considered as “microgrids” which can
simultaneously generate and consume energy [20, 1]. More
recently, the research on cooperation among entities on the
power grid (e.g., microgrids) has attracted great interests in
both industry and academia [20]. For instance, microgrids
can share their local energy to improve the efficiency and re-
silience of power supply [6].

Specifically, microgrids can transmit their excessive en-
ergy to the microgrids close to them. In the cooperation, all
the participating microgrids jointly seek an energy transmis-
sion assignment that minimizes the global energy loss during
transmission. However, to this end, all the microgrids should
disclose their local information (e.g., local supply, local de-

mand, and power quality for transmission) to each other or a
third party. Then, the data recipient (which is a microgrid or a
third party) formulates an optimization problem by denoting
the amount of energy transmitted from Mi to Mj as xij and
determining the objective function as well as the constraints.

Disclosing such local information to each other or a third
party would compromise the corresponding microgrid’s lo-
cal information. To tackle the privacy concerns, the proposed
approach in [6] efficiently transforms the shares of the opti-
mization problem to a privacy-complaint format and enables
any party to solve the problem. However, the algorithms
in [6] pursue high efficiency but cannot quantify the privacy
leakage in the protocol. In this paper, we extend the trans-
formation and optimal solution reconstruction to two secure
communication protocols in which privacy leakage can be
quantified and bounded. In the meanwhile, we give formal
security/privacy analysis for the protocols and identify that
our proposed secure communication protocols can prevent
additional information leakage against the potential collusion
among microgrids while executing the protocols. Finally, we
present some experimental results to demonstrate the effec-
tiveness and efficiency of our approach.

2. RELATED WORK

In smart grid infrastructure, privacy concerns were recently
raised in the fine-grained smart meter readings, which is fre-
quently reported to the utility [21, 7, 3]. To prevent infor-
mation leakage in smart metering, three different categories
of privacy preserving schemes were proposed in the past few
years. The first category of techniques built cryptographic
protocols to directly aggregate or analyze such meter read-
ings without sharing the raw data. For instance, Rottondi et
al. [19] proposed a privacy preserving infrastructure based
on cryptographic primitives to enable utilities and data con-
sumers to collect and aggregate metering data. The second
category of techniques obfuscate the meter readings to pre-
vent adversaries from learning the status of the appliances at
different times. For instance, Hong et al. [7] defined a pri-
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vacy notion to quantitatively bound the information leakage
in smart meter readings, and proposed streaming algorithms
for converting the readings with guaranteed output utility. Fi-
nally, the third category of techniques utilize renewable en-
ergy sources like batteries to hide the actual load of different
households, which can be found in [17], [22], etc.

Furthermore, energy sharing problem among microgrids
[20, 24] has been recently studied – locally generated en-
ergy can be shared among homes due to the mismatch be-
tween generation harvesting and consumption time in micro-
grids. Zhu et al. [24] developed an energy sharing approach
to determine which homes should share energy, and when to
minimize system-wide efficiency loss. Zhu et al. [25] also
proposed a secure energy routing approach to renewable en-
ergy sharing against security attacks such as spoofed rout-
ing signaling and fabricated routing messages. Also, some
game theoretical models [20, 16, 2] were proposed to miti-
gate the risks of self-interested behaviors in the energy shar-
ing/exchange. So far, Hong et al. [6] is the only work that
resolves the privacy issues in energy sharing/exchange. The
proposed scheme can provide some ad-hoc privacy guaran-
tee based on matrix multiplication. Instead, we extend the
approach in [6] to ensure provable security.

3. PRELIMINARIES

In this section, we briefly summarize the problem formula-
tion, transformation and solution reconstruction in [6]. Note
that the formulations of three optimization problems in [6]
are similar, which can be securely transformed and solved us-
ing the same secure communication problem. Thus, we only
focus on the basic formulation.

3.1. Problem Formulation

Given n microgrids M1, . . . ,Mi, the demand and supply of
Mi at time t is denoted asDi(t) and Si(t), respectively. Then,
given xij as the amount of energy transmitted fromMi toMj ,
the optimization (LP) problem to minimize the overall energy
delivery loss in the sharing is formulated as follows.

min :

n∑
i=1

n∑
j=1

θijxij

s.t.


∀i ∈ [1, n],

∑n
j=1(1− θji)xji −

∑n
j=1 xij + Si(t) ≥ Di(t)

∀i ∈ [1, n],
∑n

j=1 xij ≤ Si(t)

∀i ∈ [1, n], ∀j ∈ [1, n], xij ≥ 0
(1)

where θij represents the energy loss rate for transmission
between Mi and Mj , which is determined by the distance be-
tween them on the power transmission network and the power
quality data, such as voltage and current. Di(t), Si(t) and
θij are privately held by microgrid Mi. The general form of
Equation 1 can be derived as below:

min ~c1
T ~x1 + ~c2

T ~x2 + · · ·+ ~cn
T ~xn

s.t.


A1 ~x1+ . . . +An ~xn

B1 ~x1
. . .

Bn ~xn

≤
≤
...
≤

~b0
~b1
...
~bn

(2)

where ~xi represents Mi’s variables (xi1, . . . , xin), which
is privately held by Mi. Matrices/vectors Ai, Bi, ~ci

T and ~bi
are Mi’s private inputs in the LP problem.

3.2. Transformation

The above LP problem is heterogeneously partitioned into n
shares – global constraints are co-held by all the parties (ver-
tically partitioned [10, 12, 5]) while each constraint belongs
to only one party (horizontally partitioned [8, 13, 11]). To
ensure privacy protection in solving and realizing the above
problem, a transformation-based approach [6] was proposed:

∀i ∈ [1, n], Ai −→ AiQi

∀i ∈ [1, n], Bi −→ BiQi

∀i ∈ [1, n], ~ci
T −→ ~ci

TQi

∀i ∈ [1, n], ~xi −→ ~yi (3)

where each party Mi locally post-multiplies its shares
(i.e., Ai, Bi and ~ci

T ) in the LP problem by an n × n ran-
dom nonnegative monomial matrixQi [10] which is privately
generated by itself, and variables in the new problem ∀~yi
correspond to ∀~xi. Then, ∀i ∈ [1, n], AiQi, BiQi, ~ci

TQi can
be disclosed to other parties.

Note that the righthand side values ~b0, ~b1, . . . , ~bn are also
transformed to random numbers in [6], and we still keep such
transformation. Thus, we will focus on the security/privacy
improvement on the transformation in Equation 3.

3.3. Reconstruction

In [6], after solving the transformed problem to obtain the
optimal solution ∀~yi∗, the solver (any party or an external
party, e.g., the cloud) distributes the solution shares to the
corresponding parties. Then, the optimal solution of the orig-
inal problem ∀i ∈ [1, n], ~xi

∗ can be locally reconstructed as:
~xi
∗ = Qi~yi

∗ [6, 9, 10]. The solver and other parties cannot
learn the details of ~xi

∗, Ai, Bi since Qi is unknown to them.

4. EXTENDED TRANSFORMATION

With the transformation in [6], each party’s share of problem
cannot be learnt by other untrusted parties, even if the trans-
formed shares are disclosed to them. However, the informa-
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tion leakage in the communication protocol cannot be quan-
tified. We now extend it to a more secured transformation
based on Homomorphic cryptosystem (e.g., Paillier [18]).1

4.1. Overview

The basic idea of the extended transformation is described as
follows. For any party Mi’s shares in the LP problem Ai, Bi

and ~ci
T , we let all the parties jointly transform such shares

(via Homomorphic Encryption) in sequence – while trans-
forming Mi’s shares, party Mj locally generates a new ran-
dom nonnegative monomial matrix ∀j ∈ [1, n], Qij , and post-
multiplies it to each of the three transformed shares (by the
previous party). In case that j = i holds, Mi post-multiplies
its own shares by its own matrix Qii. Similarly, all the par-
ties jointly reconstruct every share of the optimal solution ~y
by pre-multiplying their matrices in a reverse order (also via
Homomorphic Encryption).

4.2. Extended Secure Transformation

Without loss of generality, we let an external party P (e.g.,
the cloud) solve the transformed problem. In the extended se-
cure transformation protocol, P generates the public/private
key pair (pk, sk), and distributes the public key pk to
M1, . . . ,Mn. Since the transformation for Ai, Bi and ~ci

T

are identical [6], we can take Ai as an example to illustrate
our secure transformation protocol in Algorithm 1.

Algorithm 1 Extended Secure Transformation
1: for i ∈ [1, n] do
2: Mi randomly generates Qii

3: Mi encryptsAiQii with pk to generateE = Encpk(AiQii),
and sends E to the next party Mj in Line 4

4: for ∀j ∈ [1, n], j 6= i,Mj do
5: Mj randomly generates Qij

6: Mj updates E with Qij (Line 7-9: Eab denotes the entry
at row a and column b in E, and (Qij)kb denotes the entry
at row k and column b in Qij)

7: for each row a of E and each column b of Qij do
8: Mj computes Eab ←

∏n
k=1E

(Qij)kb

ak

9: end for
10: Mj sends the updated E to the next party
11: end for
12: the last party sends E to the solver P
13: P decrypts E to obtain: AiQii

∏n
j=1,j 6=iQij

14: end for

After decrypting all the ciphertexts, solver P can formu-
late a new LP problem with the transformed shares:

1Homomorphic cryptosystem is a semantically-secure public key encryp-
tion with an additional property to generate the ciphertext of an arithemetic
operation between two plaintexts by other operations between their individ-
ual ciphertexts. For instance, two encryptions E(A) and E(B), there exists
operations *, such that E(A∗B) = E(A)∗E(B) where * is either addition
or multiplication (in some abelian group).

∀i ∈ [1, n], Ai −→ AiQii

n∏
j=1,j 6=i

Qij

∀i ∈ [1, n], Bi −→ BiQii

n∏
j=1,j 6=i

Qij

∀i ∈ [1, n], ~ci
T −→ ~ci

TQii

n∏
j=1,j 6=i

Qij

∀i ∈ [1, n], ~xi −→ ~yi (4)

Then, P can solve the new LP problem and distribute the
solution share ~yi

∗ to Mi, which securely reconstructs its so-
lution share in the original problem with all the other parties.

4.3. Secure Reconstruction

Following the proof in [6, 10], the optimal solution in the orig-
inal problem ∀i ∈ [1, n], ~xi

∗ can be reconstructed as below:

∀i ∈ [1, n], ~xi
∗ = Qii

n∏
j=1,j 6=i

Qij ~yi
∗ (5)

As a result, all the parties M1, . . . ,Mn should jointly re-
construct each solution share. Then, we present the secure
communication protocol for the optimal solution reconstruc-
tion in Algorithm 2.

Algorithm 2 Secure Reconstruction
1: for i ∈ [1, n] do
2: Mi generates a public/private key pair (pki, ski) and sends

the public key pki to all the other parties M1, . . . ,Mn

3: Mi encrypts ~yi∗ with pki to generate Y = Encpk(~yi
∗), and

sends Y to the next party Mj in Line 4
4: for ∀j ∈ [n, 1], j 6= i,Mj do
5: Mj updates Y with Qij (Line 6-8: Ya denotes the ath

entry in Y )
6: for each row a of Qij do
7: Mj computes Ya ←

∏n
k=1 Y

(Qij)ak

k

8: end for
9: Mj sends the updated Y to the next party

10: end for
11: the last party sends Y to Mi

12: Mi decrypts Y to obtain:
∏n

j=1,j 6=iQij ~yi
∗

13: Mi reconstructs its share in the original optimal solution
~xi
∗ = Qii

∏n
j=1,j 6=iQij ~yi

∗ (pre-multiplying by Qii)
14: end for

Finally, in the optimal energy sharing, each party Mi can
locally route the energy amount x∗ij ∈ ~xi

∗ to the recipientMj

(note that xij = 0 if i = j holds).

4.4. Privacy Preservation and Collusion Resistance

Privacy. We now analyze the privacy leakage of the two pro-
tocols. For both extended secure transformation and secure
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reconstruction, there is no privacy leakage while executing
the protocol under the definition of secure multiparty compu-
tation [23, 4] (all the messages received by all the parties can
be simulated in polynomial time by repeating the protocols).
Therefore, private inputs (e.g., demand, supply, and power
quality of each party) can be protected.

On the other hand, the information leakage in the outputs
can be quantified:

• The solver only learns the transformed optimization
problem (the obfuscated shares of each party and the
corresponding optimal solution).

• Each party only knows its share in the optimal solution,
e.g., how much energy transmitted from itself to the
energy recipient in the global optimal sharing.

Handling Collusions. The two protocols can also effectively
handle potential collusions (on learning private information)
while solving the problem. None of those parties knows the
actual overall transformation (aka. a combination of transfor-
mations), since each of {∀i,∀j,Qij} is privately generated
as a random nonnegative monomial matrix by Mj (for trans-
forming Mi’s shares). As a consequence, the solution recon-
struction cannot be completed if any partyMj is absent (miss-
ing ∀i,Mij). Therefore, any number of microgrids (less than
n) cannot collude with each other to infer private information
from other honest microgrids while executing the protocol.
The collusion resistant feature provided by the two protocols
is equivalent to a trusted-third party.

5. EXPERIMENTS

We have estimated the performance of our protocols using
two different key length (512/1024-bit) and varying number
of parties (20 to 500). 2 The computational costs of two pro-
tocols are plotted in Figure 1. To significantly improve the se-
curity/privacy, the protocols take longer time compare to [6],
and such computational costs are still tolerable with a poly-
nomially increasing trend as the number of parties increases.

In addition, we present the communication overheads of
the two protocols per party in Table 1. As the number of par-
ties increase, the average bandwidth consumption (size of the
transmitted messages) of the extended secure communication
protocol and secure reconstruction protocol also grow poly-
nomially. Therefore, the two protocols can be implemented
in most of the current networking environment.

6. CONCLUSION AND FUTURE WORK

In this paper, we have extended the secure transformation and
solution reconstruction in [6] to ensure provable security for

2We are currently implementing the simulation system for the main grid
and numerous microgrids by integrating communication and power distribu-
tion networks, and will evaluate our proposed protocols in the system soon.
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Fig. 1. Computational Costs

Table 1. Communication Overheads
Number of Parties ExtSecTransform SecReconstruction

20 0.00904 MB 0.0004 MB
40 0.0761 MB 0.0019 MB
60 0.261 MB 0.0045 MB
80 0.624 MB 0.0078 MB

100 1.23 MB 0.014 MB
200 9.96 MB 0.051 MB
300 33.5 MB 0.112 MB
400 79.6 MB 0.119 MB
500 155.6 MB 0.312 MB

solving the energy sharing optimization problem and imple-
menting the optimal solution on the power grid. Novel secure
communication protocols were proposed for all the parties to
jointly transform their individual shares of the optimization
problem, and jointly reconstruct their own shares in the opti-
mal solution of the original problem. In the meanwhile, col-
lusions can be handled with the secure communication proto-
cols. In case that some parties disclose information to each
other so as to learn other parties’ private information, they
cannot learn the actual transformation and reconstruction as
long as at least one party is not colluding with them.

In the future, we will investigate other privacy preserv-
ing cooperative models among entities with local energy (viz.
microgrids) on the power grid. For instance, global and local
load balancing can be manipulated and further optimized via
the cooperation among microgrids (e.g., scheduling [14, 15]).
We intend to propose a privacy preserving cooperative model
for them to jointly improve the global and local performance
of the power generation, supply, storage and consumption.
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