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ABSTRACT
Image denoising via machine learning techniques, particu-
larly neural networks, has been shown to achieve state-of-the-
art performance. However, in practice security and privacy is-
sues undesirably arise in applying a trained machine learning
model to image denoising. In this paper, we propose a system
framework that enables the owner of a trained machine learn-
ing model to provide secure image denoising service to an
authorized user, via the aid of cloud computing. Our frame-
work ensures that the cloud server learns nothing about the
model and the user’s images, while the user learns nothing
about the model except denoised images. Experiments are
conducted for performance evaluation, and the results show
that our design can achieve denoising quality close to that in
the plaintext domain. For future work, we plan to explore
various directions for optimizing the runtime performance.

Index Terms— Image denoising, machine learning, neu-
ral network, privacy, cloud computing

1. INTRODUCTION

Image denoising is a fundamental problem in the field of
image processing. With a noisy image as input, an image de-
noising procedure aims to output a denoised image where the
noise is reduced. Nowadays, it is a popular trend to learn an
image denoising procedure via machine learning techniques,
particularly neural networks, as this has shown state-of-the-
art performance [1, 2, 3]. Typically, image denoising from
neural networks includes two phases: (i) a training phase
where a neural network model is trained from some training
data consisting of pairs of noisy and noise-free images, and
(ii) a denoising phase where the trained neural network model
is applied to denoise noisy images.

This paper focuses on the denoising phase of neural net-
work based image denoising. We start with considering a re-
alistic setting in which a model owner has trained a neural net-
work model and a user is interested in leveraging the model
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to denoise his own noisy images. For example, as training
a model typically requires expertise in sophisticated param-
eter tuning, a hospital may seek to leverage a model already
trained by a medical research center for the denoising of noisy
medical images. Such an application via machine learning is
an emerging service paradigm nowadays [4, 5].

To accommodate such a paradigm, we may trivially ask
the model owner to directly give the neural network model
to the user for local denoising, or to let the user submit the
images to the model owner for remote denoising. However,
such trivial mechanisms may not be easy to be enforced in
practice due to security and privacy concerns. On the model
owner side, he may not be willing to directly reveal the model
as (i) the model may constitute a competitive advantage
and thus should be kept confidential and (ii) the model may
leak information about the training data which is potentially
privacy-sensitive [5]. From the perspective of the user, the
images, e.g., medical images and face images, may easily re-
veal privacy-sensitive information. Therefore, protection for
both the neural network model of the model owner and the
image of the user is highly demanded in applying the trained
neural network model to image denoising.

A natural direction towards capturing the functionality
and security of the above application scenario is secure two-
party computation (e.g., [5]). However, this requires that
the model owner and the user should be synchronous, which
means that both of them need to be online at the same time
upon the trigger of a denoising request. Besides, the model
owner should be dedicated to both the training phase and the
denoising phase, which imposes extra workload and resource
investment that might not be desired by the model owner.

In light of the above observations, in this paper, we initiate
the first study toward a secure framework for neural network
based image denoising, where (i) the model owner and the
client are made asynchronous and do not need to be online at
the same time and (ii) the model owner can put the focus on
maintaining and updating the neural network model, and get
relieved of undesirable burden in the denoising phase. Specif-
ically, our framework introduces a semi-trusted cloud server
to obliviously aid the model owner to provide the denoising
service to the authorized user. Such a server-aided model is
quite natural and realistic given the proliferation of cloud ser-
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vices, and has also been widely adopted in the literature (e.g.,
[6, 7, 8]). Note that similar to prior work, we assume that
the semi-trusted cloud server is non-colluding, which means
that the cloud server will not collude with all the other par-
ties. The intuition behind this assumption is that cloud ser-
vice providers like Amazon and Google are well-established
companies and there are little incentives for them to put the
reputation at risk. Additional rationale includes the existence
of audits and the fear of legal/financial repercussion [7, 8].

Our design ensures that along the workflow, the cloud
server is oblivious to both the neural network model of the
model owner and the image of the user, while the user does
not learn the neural network model. While there are some
prior works on secure image denoising via other techniques
(e.g., [9, 10], just to list a few), secure neural network based
denoising has not been explored before, to our best knowl-
edge. Although the runtime performance is not yet attractive
at this moment, we will provide comprehensive discussion on
the existence of a large space where we can explore runtime
performance optimization from various dimensions. In what
follows, we will give our problem statement in Section 2 and
the detailed design in Section 3. Then, we will provide some
preliminary experiment results in Section 4, and give the con-
clusion and future work in Section 5.

2. PROBLEM STATEMENT

2.1. Neural network based image denoising

In this paper, we resort to the neural network model proposed
in [1] as the first instantiation of our efforts toward secure neu-
ral network based denoising, due to its simplicity and promis-
ing performance. In [1], it is proposed that a multi-layer per-
ceptron (MLP) can be used as the neural network model for
high-quality denoising. Given an input vector p, an MLP is
essentially a nonlinear function that maps p to the output vec-
tor q, via processing the input through several layers. For
example, an MLP with L− 1 hidden layers can be written as,

q = WL · tanh(...tanh(W1p+ b1)...) + bL), (1)

where Wi denotes the weight matrix and bi the bias vector,
of the ith layer (i ∈ [1, L]). For image denoising, the input
vector x is a noisy patch of the image to be denoised, and the
output vector y is the denoised patch. So, given a noisy im-
age, we first need to decompose it into overlapping patches
and then apply the model to the denoising of each patch sepa-
rately. Finally, the denoised image is obtained by placing the
denoised patches at the locations of their noisy counterparts
and averaging/weighting the overlapping region [1].

2.2. System model

Our work targets cloud-aided secure neural network based
image denoising, which is illustrated in Fig. 1. We con-
sider the setting where a model owner holding a trained neu-

User

Model Owner

Cloud Server  
Encrypted Neural 
Network Model

Secure Image Denoising

Fig. 1. Cloud-aided secure image denoising model.

ral network model allows the user to use the model for image
denoising, with the aid of a cloud server. For security and
privacy concerns, the model owner will send the trained neu-
ral network model in encrypted form to the cloud server. To
leverage the model, the user is required to run a protocol with
the cloud server for secure denoising over his noisy images.

2.3. Trust assumptions

We consider semi-honest adversaries in our system, which
refers to the cloud server and the user. They will honestly fol-
low our protocol specification, yet are interested in inferring
private information that is out of their access rights. In partic-
ular, the cloud server tries to learn the values in p, {Wi}Li=1,
{bi}Li=1, and q, while the user attempts to learn the values
in {Wi}Li=1 and {bi}Li=1. Following prior works, we assume
that the cloud server is non-colluding, i.e., there is no col-
lusion between the cloud server and the user. Our security
goal is to ensure that the cloud server learns nothing about the
values in p, {Wi}Li=1, {bi}Li=1, and q, and the user learns
nothing about the values in {Wi}Li=1 and {bi}Li=1. Similar
to prior works on secure neural network based applications
[5], we do not aim to protect the sizes of p, q, {Wi}Li=1, and
{bi}Li=1. Note that in principle the user can exploit the usage
of the model as a blackbox oracle to launch model extrac-
tion attacks [11]. However, the cloud server can rate limit the
user’s requests to slow down or bound the leakage.

3. DESIGN OF SECURE NEURAL NETWORK
BASED IMAGE DENOISING

3.1. Construction

Our construction for secure neural network based image de-
noising includes two phases. In phase 1, the model owner
encrypts the neural network model and sends it to the cloud
server. In phase 2, the user runs a protocol with the cloud
server for secure denoising. Each phase is elaborated below.

Phase 1. To upload the neural network model to the cloud
server, the model owner first encrypts each weight matrix and
each bias vector. We use additively homomorphic cryptosys-
tem for encryption, particularly the Paillier cryptosystem. Let
(pku, sku) denote a key pair of the user of the Paillier cryp-
tosystem, where pku is the public key and sku is the secret
key. Also, let HE be the encryption algorithm of the Pail-
lier cryptosystem. The model owner encrypts each element
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Fig. 2. Original tanh(·) function and its approximation.

of Wi and bi under pku. We denote the element-wise en-
cryption of Wi and bi as HEpku

(Wi) and HEpku
(bi), re-

spectively. The model owner sends {HEpku(Wi)}Li=1 and
{HEpku(bi)}Li=1 to the cloud server.

Phase 2. We now describe how to securely denoise a
noisy patch p of a noisy image. For simplicity of presenta-
tion, we will present our protocol for the case assuming one
hidden layer. That is, q = W2tanh(W1p + b1) + b2. The
extension to more layers is quite natural, as the output of this
layer serves as input of the next layer, followed by the same
necessary operations.

Firstly, we need to somehow compute the element-wise
encryption of W1p, i.e., HEpku

(W1p), which requires en-
crytped multiplication. To this end, we resort to the protocol
in [12], which enables the cloud server holding HEpku(m1)
and HEpku

(m2) to obtain HEpku
(m1 · m2), while the user

learns nothing. Through this protocol, we can enable the
cloud server to obliviously obtain HEpku

(W1p), while the
user learns nothing (except his own input p). Subsequently,
based on the property of homomorphic encryption, the cloud
server can easily compute HEpku

(W1p+ b1).
After HEpku

(W1p + b1) is obtained at the cloud server
side, we then need to evaluate the activation function on each
element of W1p+b1 in the encrypted domain. However, the
tanh(·) function requires exponentiation and division, which
is hard to be efficiently computed in the ciphertext domain
[5]. Instead of directly evaluating the tanh(·) function, our
insight is to seek a secure-computation-friendly approxima-
tion that can be efficiently computed using secure computa-
tion techniques. We observe that the approximation in [13] is
a good choice, which is a piecewise non-linear approximation
of the tanh(·) function with an average error 4.1× 10−3 and
maximum error 2.2×10−2. In particular, as plotted in Fig. 2,
the tanh(x) function is approximated as:

tanh(x)∗ =

 k × (m1|x|2 + c1|x|+ d1), 0 ≤ |x| ≤ a
k × (m2|x|2 + c2|x|+ d2), a < |x| ≤ b
k, otherwise

,

where k=sign(x), and m1, m2, c1, c2, d1, d2, a and b are
−0.2716, −0.0848, 1, 0.42654, 0.016, 0.4519, 1.52, and
2.57, respectively.

Given this approximation, we now show how to securely
evaluate the approximate function tanh(·)∗ on a given cipher-

text HEpku
(x). Based on Yao’s garbled circuits, we design

a secure evaluation protocol which enables the cloud server
holding HEpku

(x) to obtain HEpku
(tanh(x)∗), while the user

learns nothing. Our protocol is as follows:
1. The cloud server chooses a random mask r and pro-

duces HEpku(x+ r), which is sent to the user.
2. The user performs decryption to obtain x+r. Then, the

user builds a garbled circuit, which takes as input the
garbled values of x+ r, r, and ru. Here ru is a random
mask chosen by the user. Inside the garbled circuit, the
original value x is first recovered via (x + r − r)and
then the tanh(x)∗ is computed. To protect the result,
the garbled circuit will output tanh(x)∗+ru instead of
tanh(x)∗.

3. After the garbled circuit is built, the user sends it along
with the garbled values of x + r, ru to the cloud
server. Besides, HEpku

(ru) is also sent, which will
be used to transform the result (tanh(x)∗ + ru) to
HEpku(tanh(x)

∗) so that it can be used in subsequent
computation.

4. The cloud server runs a 1-out-of-2 oblivious transfer
protocol with the user to obtain the garbled value of r,
and then evaluates the garbled circuit. The evaluation
outputs tanh(x)∗ + ru. Then, the cloud server com-
putes HEpku

(tanh(x)∗) via HEpku
(tanh(x)∗ + ru) ·

HEpku(ru)
(−1).

Based on this secure evaluation protocol, the cloud server
can obtain HEpku(tanh(W1p+b1)

∗), i.e., the element-wise
encryption of tanh(W1p + b1)

∗. The remaining opera-
tions to obtain HEpku

(W2tanh(W1p + b1)
∗ + b2) at the

cloud server side is straightforward, which only needs en-
crypted multiplication and encrypted addition as before. Af-
ter HEpku(W2tanh(W1p+b1)

∗+b2) is obtained, the cloud
server can send it to the user, who then performs decryption
to obtain W2tanh(W1p+ b1)

∗ + b2.

3.2. Security guarantees
Our security design can ensure that the cloud server learns
nothing about the values in p, Wi, bi, and q, while the user
only learns the denoised patch q without knowing Wi and bi.
Such security guarantees can be easily understood by inves-
tigating the workflow of our design, according to the modu-
lar sequential composition theorem [14, 4]. Firstly, the cloud
server receives encrypted Wi and bi under the semantically-
secure Paillier cryptosystem, for which it does not have the
key for decryption. Then, during the denoising procedure,
there are some interactions among the cloud server and the
user. Recall that these interactions are realized via the en-
crypted multiplication protocol and the garbled circuit based
secure evaluation protocol. The security properties of these
protocols ensure that the interactions reveal nothing about
the underlying private information to the cloud server/user.
Therefore, in our security design the cloud server learns noth-
ing while the user only learns the denoised result.
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Fig. 3. Five test images.

(a) (b) (c)

Fig. 4. An example of visual denoising result. (a) Noisy im-
age; (b) Baseline result; (c) Our result.

4. EXPERIMENTS

4.1. Experiment setup
Our experiments are conducted on Microsoft Azure standard
D12 instance (with 4 cores, 28GB RAM, and the Ubuntu
Server 16.04 LTS system) using Java. For additively ho-
momorphic encryption, we use the Paillier cryptosystem1.
For garbled circuits, we use the ObliVM-lang programming
framework [15] for proof-of-concept implementation. We use
the trained neural network model2 in [16] for test, which is an
enhanced result on [1]. This model has four hidden layers, of
which the sizes are 3072, 3072, 2559, and 2047, respectively.
The output layer has a size 289, i.e., a denoised patch with
size 17 × 17. We use five popular standard test images (with
size 512 × 512) in our experiments, which is shown in Fig.
3. For demonstration purpose, the test images are corrupted
with Gaussian noise with standard deviation 25. Each test
noisy image is decomposed into overlapping patches of size
17 × 17 with a stride size 3. To denoise a noisy patch p, the
neural network model takes as input a noisy patch p∗ of size
39 × 39, which includes not only the corresponding noisy
pixels of p but also the surrounding ones. Following [1], each
noisy pixel q is normalized via (q/255 − 0.5) · 0.2, before
being fed to the neural network.

4.2. Performance evaluation
We first compare the denoising quality of our design with that
of the plaintext baseline method. Fig. 4 shows a visual exam-
ple of the denoising result. The PSNR of the noisy image is
20.16 dB, while the PSNRs from the baseline method and our
security design are 32.25 dB and 32.11 dB, respectively. The
gap is 0.14 dB. Table 1 summarizes the PSNR results for all
test images. The average gap is 0.116 dB, indicating that our
design achieves the denoising quality close to the baseline.

We now report some results on the computation side. In
particular, we focus on measuring the computation cost of two

1Paillier lib.: http://www.csee.umbc.edu/ kunliu1/research/Paillier.html
2Trained model: http://people.tuebingen.mpg.de/burger/neural denoising/

Table 1. Comparison of PSNR (dB) results for test images
Image Baseline Ours Gap

Lena 32.25 32.11 0.14
Monarch 31.7 31.57 0.13
Airplane 31.72 31.53 0.19
Man 29.81 29.73 0.08
Baboon 25.84 25.8 0.04

core atomic operations, i.e., encrypted multiplication and se-
cure evaluation of the approximate hyperbolic tangent func-
tion. In our test, for the encrypted multiplication, it takes
about 56.85 ms on the user side and 68.8 ms on the cloud
server side, respectively. For the protocol of secure evalua-
tion of the tanh(·)∗ function, the computation cost turns out
to be about 230.09 ms on the user side and 237.41 ms on the
cloud side. Denoising a noisy patch can take up to tens of
hours, without implementation-wise optimization. Although
not yet efficient at this moment, our construction provides the
first feasible solution for secure neural network based image
denoising. We leave runtime performance speedup to our fu-
ture work, which will be discussed shortly.

5. CONCLUSION AND FUTURE WORK

We presented the first framework toward secure neural net-
work based image denoising, which allows the model owner
of a trained neural network model to provide secure denoising
service to the authorized user via the aid of cloud computing.
The model owner is only required to send the encrypted neu-
ral network model to the cloud server and does not need to
stay online during the secure denoising phase. Our design
leverages the cryptographic techniques of homomorphic en-
cryption and garbled circuits, ensuring that the cloud server
learns nothing while the user only learns the denoised images.
Experiments show that the denoising quality provided by our
secure design is comparable to that in the plaintext domain.

One interesting direction for future work is to optimize
the overall runtime performance, which could be investigated
from various aspects. Firstly, as the core cryptographic oper-
ations (i.e., encrypted multiplication and secure evaluation of
the approximate activation function) are performed element-
wise, exploiting parallel computation on powerful GPU [3] is
promising. Secondly, one may seek simpler polynomial ap-
proximation of the activation function so as to simplify the
garbled circuit, and may consider packing multiple plaintext
values in a single ciphertext [17] for computation. Thirdly,
emerging trusted hardware like Intel SGX also provides op-
portunities to achieve minimal performance overhead [18].
Additionally, one may consider the substitute of homomor-
phic encryption like secret sharing, which is lightweight (yet
may require multiple cloud servers). A second future direc-
tion is to enrich the functionality via extending the framework
to embrace more complex neural network models (e.g., [3]),
and via exploring how to also protect data privacy in the phase
of training the neural network model.
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