
Two-Sample Testing can be as hard as Structure
Learning in Ising Models: Minimax Lower Bounds

Aditya Gangrade, Bobak Nazer, and Venkatesh Saligrama
Boston University

{gangrade,bobak,srv}@bu.edu

Abstract—Consider the following structural two-sample testing
problem: given two sets of sample drawn from Ising models, de-
termine whether the underlying network structure has changed.
In [1], we showed that for Ising models over p variables with
network structures that have degree bounded by d, under mild
conditions on the model parameters, the sample complexity of
this problem is very close to that of determining either of the
network structures. Therefore, the naı̈ve scheme of learning and
then comparing the structures of both sets of samples is near
data-optimal. However, the minimax lower bounds in [1] relied
on Ising models that differed in only one edge, which leads to
the natural follow-up question: are large changes significantly
easier to detect? We extend the previously developed framework
to consider this problem, and show that, in a certain parameter
regime, large changes do not provide any significant improvement
in the number of necessary samples for reliable two-sample
testing.
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I. INTRODUCTION

Markov Random Fields (MRFs) provide a very general yet
structured framework for describing dependencies in high-
dimensional probabilistic models, and are widely applied
in a multitude of areas. Recall that an MRF on p variables
has an associated undirected graph G = ([1 : p], E) such
that the joint distribution of the random variables is Markov
according to the edge set of G. We refer to this graph as the
Markov network structure of the MRF. In this paper, we will
concentrate on the simple instance of an Ising model, which
is a {±1}p-valued MRF, and in particular on Ising models
with network structures that have maximum degree at most d.
We refer to the set of graphs on p nodes with degree bounded
by d as Gp,d.

We consider the two-sample problem of testing if
the network structure of a system modeled by an Ising
distribution has changed or not on the basis of two sets of
samples drawn from it, and refer to the same as structural
change detection. The change detection problem and the
related problem of change estimation, have received both
practical interest, particularly in biological applications
[2]–[4], and theoretical interest, with the latter concentrating
on algorithms to detect/estimate changes in Ising models,
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and the study of the sample complexity and consistency
conditions of the same [3], [5]–[7].

The related one-sample problem of estimating the network
structure of an Ising model given samples drawn from it -
here referred to as structure learning - has been well studied
over the past decade. A large body of work has concentrated
on constructing structure learning schemes for the Ising
model, including algorithms, regularised estimators, and with
particular focus on determining the sample complexity and
consistency conditions of the same (see, e.g., [8]–[11] and
references therein). A smaller body of work has studied
the information-theoretic hardness of structure learning
in terms of simple graph properties, providing necessary
and sufficient conditions on sample complexity for reliable
structure learning [9], [12], [13].

Note that a naı̈ve approach to change detection is to
completely learn the structures of the distributions underlying
both sets of samples, and then compare them. Such a scheme
is naturally considered profligate in the amount of samples
it requires for the obvious reason that it is solving a harder
problem than it needs to. This is further compounded in
the practically interesting case when the underlying models
are dense, but the changes between them are sparse, since
structure learning sample complexity scales exponentially in
d. A possible workaround is suggested by the compressed
sensing literature, which demonstrates models where learning
sparse changes can be much easier than learning either of the
models themselves. A number of recent papers (for instance,
[5], [6]) have considered direct change detection schemes that
exploit the sparseness of changes in order to estimate changes
with sample costs that are agnostic to the complexity of the
underlying distributions themselves. In particular, these papers
use ‘regularised density ratio estimation’ schemes to estimate
changes with sample complexities O(poly(∆) log p), where
∆ is the number of changed edges. However, these schemes
all impose strong conditions on the possible underlying
distributions that implicitly limit their complexity.

In [1] we took an information-theoretic approach to
the change detection problem, and showed that for Ising
models on Gp,d with bounded edge parameters, the change
detection problem is almost as sample intensive as structure
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learning. In particular, we provided lower bounds on the
sample complexity of change detection that are in general
exponential in d, and are separated from the corresponding
structure learning sample complexity by a factor that is at
most poly(d). However, our proof technique relied on the
difficulty of detecting very small changes in the network
structures of an Ising model - that of precisely one edge. A
natural follow-up question then is whether larger changes are
significantly easier to detect.

In this paper, we extend the framework of [1] to consider
the detection of large changes. Informally, we posit that
if a change occurs, then the network structures of the two
underlying distributions must differ in at least ∆ of the
edges for a freely chosen parameter ∆. We call this problem
∆-change detection, and, as with the previous work, we
obtain minimax sample complexity lower bounds required for
the same. Depending on the parameter regime, we are able to
demonstrate that either ∆-change detection requires roughly
the same sample complexity as structure learning or that ∆
must be exponentially large in d in order to obtain any benefits.

Notation: For a natural n, we use [1 : n] as shorthand for
the set {1, 2, . . . , n}. We denote random vectors, usually
of dimension d or p, by X or X̃ , and let X denote the
alphabet from which each entry is drawn. For a natural i, Xi

is the ith component of X . Similarly, for a set of naturals
S, XS = (Xi){i∈S} is the sub-vector consisting of the
entries of X whose indices are in S. We use Xn to denote
an n-length sequence of i.i.d. random vectors, frequently
referred to as a ‘dataset’. For a distribution P , and given
X ∼ P , P⊗n is the distribution of Xn. Further, given Xn,
the tth sample in that dataset is denoted X(t). The two
element sets {i, j} are interchangeably denoted (i, j) when
referring to edges in an undirected graph, and as just ij
when they appear in a subscript. Vectors in R(n2) are indexed
by cardinality-two subsets of [1 : n]. For instance, a vector
θ ∈ R(3

2) is represented as (θ12, θ13, θ23). The identity matrix
of size p is denoted as Ip.

For functions f, g, f = O(g) if there exists a positive
constant such that limn→∞ f(n)/g(n) ≤ C, and f = o(g) if
lim f/g = 0. Similarly, f = Ω(g) if g = O(f), and f = ω(g)
if g = o(f). For a single variable n, we say that g = poly(n)
if there exists a polynomial f such that g = O(f(n)).

II. PROBLEM STATEMENT AND DEFINITIONS

A. Ising Models

Given a graph G and a vector θ ∈ R(p2) such that
(i, j) 6∈ E ⇒ θij = 0, a 0-external field Ising model on G
with parameter θ is a {±1}-valued Markov random field with
the distribution

P(G,θ) (X = x) =
1

Z(θ)
exp

 ∑
(u,v)∈E

θuvxuxv

 ,

where Z(θ) is a normalising constant commonly known as
the partition function. We let Ip,d(α, β) be the set of Ising
models on graphs with p nodes and maximum degree d such
that for every u, v, either θuv = 0, or α ≤ |θuv| ≤ β holds.
Note that every θ determines a network structure, which we
refer to as G(θ). We frequently describe Ising models in
terms of their Markov network structures. In particular, we
say that an Ising model has the edge (i, j) with weight w if
θij = w. If all the edges of an Ising model have the same
weight, we say that the distribution has uniform edge weights.

We say that two Ising models P,Q are ∆-separated if the
edge sets of G(P ) and G(Q) differ in at least ∆ locations.

B. Change Detection

For Ising models P,Q ∈ Ip,d(α, β), let Xn1 ∼ P⊗n1 ,

and X̃n2 ∼ Q⊗n2 be finite sets of samples, also referred
to as datasets, drawn independently and identically from P
and Q, respectively. An (n1, n2)-sample ∆-change detector
for Ip,d(α, β) is a map φ : Xn1 ×Xn2 → {0, 1}. Let Φn1,n2

be the set of all (n1, n2)-sample ∆-change detectors. Let the
risk of a detector φ be

R(φ;n1, n2)

:= sup
P,Q∈Ip,d(α,β)

P
{
φ(Xn1 , X̃n2) = 1 | G(P ) = G(Q)

}
+ P

{
φ(Xn1 , X̃n2) = 0 | |G(P )4G(Q)| ≥ ∆

}
,

where A4B denotes the symmetric difference between sets
A and B. Also, let the minimax change detection risk with
(n1, n2) samples over Ip,d(α, β) be

Rcd(n1, n2) := inf
φ∈Φn1,n2

R(φ;n1, n2).

We say that an (n1, n2)-sample ∆-change detector is
δ-reliable over Ip,d(α, β) if Rcd (φ;n1, n2) < δ, and say that
the change detection problem can be solved over Ip,d(α, β)
δ-reliably with (n1, n2) samples if there exists an (n1, n2)-
sample ∆-change detector over Ip,d(α, β) that is δ-reliable
or, equivalently, if Rcd (n1, n2) < δ. The parameter δ is
occasionally referred to as the reliability level.1

The main aim of this paper is to study the trade-off
between the reliability level δ of change detection and the
sample size (n1, n2).

Remark: Note that the above definition makes the restriction
that if a change occurs, then it must occur in at least ∆
edges. A more natural framework for detecting large changes
might be to require the detector to differentiate between
changes in less than ∆ edges or more than ∆ edges. However,
the minimax risks of such a procedure are dominated by
distributions on the boundary of such changes, and are the
same as those in [1]. The obvious modification - to distinguish

1In this paper, we concentrate on achieving the reliability level 1/2, but
retain this definition for the sake of continuity with the definitions of [1].
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between changes of less than, say, ∆/2 edges and more
than ∆ edges is of interest, but since the above problem is
reducible to such a detector, our lower bounds continue to
hold for the same, and are already large enough to make our
main point that change detection is nearly as data hungry as
structure learning.

III. MAIN RESULTS

As in [1], our main results are sample complexity lower
bounds for reliable detection of large changes on Ip,d(α, β).
We begin by stating these results, and provide a proof sketch
for the same. The complete proofs are omitted for lack of
space. This is followed by a few remarks comparing these
results with known upper bounds on the sample complexity
of structure learning, and contextualising the regimes of ∆
where the lower bounds deviate from them appreciably.

Theorem 1. Let ∆ ≤ p1/3/2. If the number of samples is
such that

min(n1, n2) <
1

log(1 + tanh2 α)
log

p

4∆3
,

then the ∆-change detection risk over Ip,d(α, β) exceeds 1/2.

Theorem 2. Let ∆ ≤ p1/3/2. If d ≥ 11, and β(d−1−
√

8d) ≥
log(d− 1−

√
8d), and if the number of samples is such that

min(n1, n2) <
e2β(d−1−

√
8d)

3 max(∆, d+ 1)
log 1 +

⌊
p

max(∆, d+ 1)

⌋
,

then the ∆-change detection risk over Ip,d(α, β) exceeds 1/2.

Comment: Note that Theorem 2 continues to hold even
if the ∆ ≤ p1/3/2 condition is weakened to ∆ ≤ p/2. We
believe that the same would be true of Theorem 1, and
that the p1/3/2 condition is just an artifact of our proof
technique. However, for the sake of exactness, we hereafter
only consider the case ∆ ≤ p1/3/2.

Proof Sketch: We closely follow the proof strategy laid out in
[1], which is loosely described here. Let n = min(n1, n2), P
be an Ising model, and Q be a set of Ising models such that
every Q ∈ Q has a network structure that is ∆-separated from
G(P ). Suppose that we are told the distribution of the larger
set of samples is P , and are also told that if a change occurs,
the latter set of samples will be drawn from some Q ∈ Q
. Given this extra information, solving the change detection
problem is reduced to solving a n sample goodness of fit test

H0 : Xn ∼ P⊗n

H1 : Xn ∼ Q⊗n for some Q ∈ Q

Let R′ be the risk of the above test. By [1, Lemma 3],

Rcd ≥ R′ ≥ 1− 1

2

√
EP⊗n [L2

n]− 1,

where
Ln(Xn) :=

1

|Q|
∑
Q∈Q

Q⊗n(Xn)

P⊗n(Xn)
.

The above statement follows from noting that the risks of
the above hypothesis test 1 − dTV(P⊗n, Q̃n), where Q̃n is
the average of the alternate densities {Q⊗n}, and observing
that the χ2-divergence is an upper bound on the total variation.

Now note that picking appropriate (P,Q) from Ip,d(α, β)
yields lower bounds on the change detection risk. We call
such pairs change detection ensembles. The ensembles used
to prove the above bounds are as follows:
• Theorem 1: P is the Ising model on the graph with

no edges on p nodes, while Q is the set of
(
p/2
∆

)
Ising models formed by selecting ∆ edges out of
{(1, 2), (3, 4), . . . , (p − 1, p)} and setting each edge
weight to α.

• Theorem 2: P is the Ising model with uniform edge
weight β on bp/(d + 1)c separate cliques of size d + 1
each, while Q = {Qi : 1 ≤ i ≤ p/∆}, where each Qi is
formed by the following procedure:
– Label the cliques in the structure of P as
{1, 2, . . . , bp/(d + 1)c}. Within each clique, fix a
labelling of the nodes.

– Let K ′ be the graph formed by taking the complete
graph on d + 1 labelled nodes, and deleting all edges
in the subclique formed by the first

√
2d nodes.

– Let Gi be the graph formed by taking the structure
of P , and replacing the cliques numbered ∆(i−1)

d + 1
through ∆i

d by K ′

– Qi is the Ising model on Gi with uniform edge weight
β.

Note: The ensemble used for the proof of Theorem 1 is
canonical in that any reasonable graph class that allows for
∆ changes should contain all graphs used. Thus, Theorem
1 applies in nearly every context of interest. In particular, it
applies to forest-structured Ising models, and shows that (not
too) large changes have an entirely negligible effect on the
sample complexity when p� 1,∆ ≤ p1/3−ε.

A. Remarks

In the high-dimensional setting, one considers how the
above bounds vary as p grows large, allowing α, β, d,∆ to
vary with p arbitrarily. In this setting, three distinct properties
emerge (below c is some arbitrary constant):

1) If α, β, d are held constant, then reliable ∆-change de-
tection requires at least c log p

∆3 samples.
2) If, on the other hand, α and β are held constant while

d is allowed to grow with p, then for modetly large d,
the bound of Theorem 2 dominates, and ∆-change de-
tection requires at least c e

2βd(1−O(d−1/2))

∆ log p
∆ samples.

Note that in order for the exponential factor in d to be
ameliorated, one requires that ∆ > e2βd(1−(8d)−1/2), i.e.,
exponentially large in d.

3) Lastly, if α and β are allowed to vary as well, then
unless β(d − 1 −

√
8d) < log(d − 1 −

√
8d), we are

forced into the exponential in d growth regime. However,
since α ≤ β, reducing β strongly leads to an increased
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(a) (b) Fig2

Fig. 1: A pastiche of log-log plots of sample complexity lower bounds when α = β = λ, and p,∆ are held constant, and
terms involving them are hidden in the factor of c above. Note that these plots are cartoons, and the plots above may very up
to constant factors. In either figure, the black solid line denotes our lower bound, the dotted red line denotes inactive lower
bounds, the alternating dashed green line is the upper bound from [12, Thm. 3a)], and the dashed blue vertical line indicates
the crossover point at which the bound of Theorem 2 begins to dominate that of 1. Figure a) considers the case when d is
held constant and λ is varied. Figure b) considers the case when λ < 1 is held constant and d is allowed to vary. The constant
branch disappears when λ > 1. Note the transition of behaviour around the point λ = log d/d in either plot.

cost due to the bound in Theorem 1. Optimising α, β to
minimise this scaling cost leads to the fact that no matter
how the parameters are varied, if ∆ = poly(d), then one
needs at least c d2

log2 d
log p

∆ samples for reliable ∆-change
detection. This is in stark contrast to results such as those
in [5], [6], which suggest that direct change detection can
be done with sample complexity O(poly(∆) log p) with
no dependence on d, and hints at the restrictivenes of the
technical conditions imposed in these papers.

B. Comparison with Structure Learning Bounds

Our main point of comparison is the following result of
Santhanam Wainwright [12], which is obtained by analysing
the maximum likelihood structure learning scheme. Note that
both the phrasing and notation have been altered to suit the
needs of this paper.

Theorem [12, Thm. 3a)]. Suppose that the possible edge-
weights are known to the structure learner. It is possible to
correctly identify the network structure of a distribution in
Ip,d(α, β) with probability greater than δ if

n ≥ 3(3e2βd + 1)

sinh2(α/2)
d

(
3 log p+ log 2d+ log

1

δ

)
.

Ignoring the δ terms, this bound is separated from our lower
bounds by a factor of O

(
d∆e4β

√
2d

sinh2 α

)
, which for α−1,∆ ∈

poly(d) is subexponential in d. This implies that under such
a condition on the parameters, our bounds correctly identify
the sample complexity up to exponential order. Further, since
our bounds are based on analysing goodness-of-fit tests with

known parameter space, the closeness of these bounds also
suggests that our techniques cannot yield significantly stronger
lower bounds in such a regime.

IV. DISCUSSION

The article determines parameter regimes where large
changes have little to no effect on the hardness of change
detection. However, it is not clear to us if the 1/∆ factor
in Theorem 2 is tight or not. It is an open problem to
either determine schemes that enjoy this advantage, or to
improve the lower bounds enough to eliminate this factor.
On a broader note, we reiterate the importance of change
detection in practical contexts described in [1], and mention
the interesting problem of determining natural graph classes
in which the minimax sample complexity of change detection
is exponentially separated from that of structure learning.
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