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ABSTRACT

This paper considers the problem of parameter estimation in a net-
work in which the stochastic model of its measurements can change
due to disruption in an unknown subset of sensors. This uncertainty
in the measurements model introduces a new dimension to the esti-
mator design. On one hand, the estimation quality depends on the
successful isolation of anomalous sensors, and on the other hand,
the detection performance is imperfect because of noisy measure-
ments. Motivated by these two observations, this paper models the
problem as a composite hypothesis testing problem and analyzes an
optimal estimation framework. In large networks, the dimension of
the hypotheses testing problem increases exponentially with the size
of the network, and also finding the optimal estimate becomes com-
putationally prohibitive. To counter this, this paper provides a scal-
able solution that consists of detecting and isolating anomalous sen-
sors followed by a sensor-level estimation routine, and establishes
asymptotic optimality of the scalable approach. This paper also for-
mulates the decision rules to establish the reliability of the local es-
timates formed by each sensor, and the local estimates deemed to be
reliable are aggregated to form a global estimate. The optimal and
scalable schemes are evaluated and compared in a case study.

Index Terms— Anomaly detection, parameter estimation, detec-
tion and isolation, scalable.

1. INTRODUCTION

1.1. Overview

Consider the canonical estimation problem in a sensor network
consisting of n sensors and a fusion center (FC). Each sensor ob-
serves the stochastic parameter X ∈ Rp×1 and reports k measure-
ments to the FC. The measurements of sensor i ∈ {1, . . . n} are
denoted by Y i , [Y 1

i , . . . , Y
k
i ], which are related to X according

to
Y ji = hi(X) + N j

i , for j ∈ {1, . . . k} , (1)
where hi captures the characteristics of the channel linking sen-
sor i ∈ {1, . . . n} to the FC, and N j

i accounts for the measure-
ment noise distributed according to the probability density function
(pdf) g0. The network might undergo an external disturbance (e.g.,
measurement unit failures), driven by which the network dynamics
deviates from its known nominal model. Specifically, each sensor
i ∈ {1, . . . n} might behave anomalously with a certain likelihood,
in which case the nominal channel model hi changes to h̄i. 1. We
denote the joint pdf of the measurement vector Y i under the nom-
inal and anomalous models by f0

i and f1
i , respectively. We de-

fine K ∈ {1, . . . , n} as the maximum number of sensors that are
anomalous concurrently. Hence, there exist T ,

∑K
i=1

(
n
i

)
possi-

ble sets of anomalous sensors. Define S , {S1, . . . , ST } as the
set of all such sets. We assume that all the sensors are operating

1For the convenience in notations, in this paper we assume that the
anomalous model takes only one form. Extensions to a countable number
of models follows the same line of analysis.
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normally with the prior likelihood ε0, in which case the joint pdf of
Y , [Y 1, . . . ,Y n] is denoted by f0. Similarly, we define εi as the
prior likelihood of the sensors in Si being anomalous, in which case
the joint pdf of Y is denoted by fi, for i ∈ {1, . . . , T}.

In this paper, we aim to form an estimate ofX , for which we have
the prior pdf π. Forming such an estimate, is inherently coupled with
reliably detecting whether there exists any anomalous sensor in the
network, and when such sensors are deemed to exist, isolating them
as well.

1.2. Relevant Studies

Inference under uncertainty in sensor networks due to Byzantine
attacks is relevant to the scope of the problem discussed in this pa-
per. A literature review of the impact of Byzantine attacks on in-
ferences in sensor networks and mitigation strategies is provided in
[1]. Detection in the presence of Byzantine attacks in wireless sen-
sor networks is studied in [2–5]. Detection performance for a binary
hypotheses testing problem in a sensor network under Byzantine at-
tacks is analyzed in [2]. An event detection algorithm for a setting
with model uncertainty and Byzantine attacks is developed in [3].
Detection-driven estimation strategies are developed in [6], where
the detection performance as the number of sensors and their ob-
servations increase is analyzed. The problem of robust estimation in
linear dynamical systems under Byzantine setting is studied in [7–9].
Specifically, degradation in estimation performance of a single sen-
sor network with the stealthiness of the adversary is analyzed in [9].

Under uncertainty in the true stochastic model of sensor mea-
surements, the detection and isolation rules for identifying the true
model and the estimator design are intertwined. Decoupling the two
problems does not ensure optimality, as established in [10] and [11].
Since the detection performance cannot be perfect under noisy mea-
surements, the estimator design must incorporate the uncertainty in
the detection step for optimality. Optimal joint detection and esti-
mation frameworks are analyzed in [12] and [13], where an optimal
estimator is designed under the constraints on error performance.
A two-step joint detection and estimation methodology is also pro-
posed in [12] in the context of radar systems, in which the best de-
tector is used to decide upon the true model in the first step, and
decision rules are developed to decide on the reliability of the esti-
mate formed in the second step.

The problem of identifying the set of anomalous sensors can
be modeled as a (T + 1)−ary composite hypotheses testing prob-
lem. Clearly, the dimension of this problem increases exponen-
tially in large networks. Forming an optimal estimate also can be
computationally prohibitive in large networks. Scalable estimation
schemes by decentralizing or distributing the estimation routine to
sensor level have been investigated in [14–20]. Consensus-based
distributed estimation routines are investigated in [14–17], which
are applicable in dynamical models. Distributed estimation algo-
rithms under various constraints, such as communication bandwidth
between the sensors and the FC, and power constraints, are also stud-
ied in [15, 16, 18]. An optimal decentralized linear estimation strat-
egy for sensor network is developed in [19]. Decentralized estima-
tion scheme for a noise affected deterministic parameter in a sensor
network with bandwidth constraints is developed in [18]. A minimal
energy decentralized estimation scheme with best-linear-unbiased-
estimation fusion rule is developed in [20].
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1.3. Contributions

In this paper, we model the problem of anomaly detection and es-
timation as a composite hypotheses testing problem and provide the
optimal decision rules and estimates. However, the number of hy-
potheses corresponding to all possible set of anomalous sensors in-
crease exponentially with the number of sensors. Therefore, we pro-
pose a scalable isolation mechanism that involves forming sensor-
level isolation decisions, and subsequently aggregating them. Sim-
ilarly, forming an optimal estimate in a large network is computa-
tionally prohibitive. We also propose a reliability test for the local
estimates and utilize the techniques from existing literature to aggre-
gate them. The scalable isolation mechanism and the decentralized
estimation scheme jointly form the scalable decision rules proposed
in this paper.

2. PARAMETER ESTIMATION MODEL

The structure of the optimal estimator for X varies with the true
model of the measurements Y . All possible models of the measure-
ments set Y , for i ∈ {0, . . . , T}, can be listed as

Hi : Y ∼ fi(Y |X), withX ∼ π(X) . (2)
To capture the estimation quality, we define the non-negative cost
function C(X,U) to measure the fidelity of estimateU forX . Un-
der model Hi, the average posterior cost function is defined as

Cp,i(U | Y ) , Ei [C(X,U) | Y ] , for i ∈ {0, . . . , T} . (3)
The optimal estimator is defined as

X̂i(Y ) , arg inf
U

Cp,i(U | Y ) , (4)

and the optimal estimation cost is given by

Ĉp,i(Y ) , inf
U

Cp,i(U | Y ) . (5)

In Section 3, we provide the optimal rules for estimating X , and
at the same time isolating the anomalous sensors, when they are
deemed to exist. The complexity of such decisions, however, grows
exponentially, as the size of the network grows. To circumvent the
complexity, in Section 4 we provide a scalable algorithm that has
controlled complexity and has asymptotically optimal performance.

3. OPTIMAL DECISION RULES

Forming a reliable estimate for X requires knowing the statisti-
cal model of the measurements, since the measurements model faces
uncertainty due to potentially having anomalous sensors. Hence,
for estimating X , we need to also concurrently detect and isolate
anomalous sensors. We model this problem as a (T + 1)-ary com-
posite hypothesis testing problem, where for i ∈ {0, . . . , T} we
have

Hi : Y ∼ fi(Y |X), withX ∼ π(X) . (6)
The detection, isolation, and estimation routines are intertwined
and a decoupled approach cannot guarantee optimal performance.
Specifically, performing anomaly detection and isolation followed
by optimal estimation does not incorporate the uncertainty of the
detection and isolation decisions into the estimation rule. In this
section, we provide the optimal combined detection, isolation, and
estimation rules.

3.1. Optimal Sensor Isolation and Parameter Estimation

We model the detection rules for the hypothesis testing prob-
lem in (20) by a randomized rule δ , [δ0(Y ), . . . , δT (Y )],
where δi(Y ) is the probability of deciding in favor of Hi, for
i ∈ {0, . . . , T}. Define Dc ∈ {H0, . . . ,HT } as the decision and
Tc ∈ {H0, . . . ,HT } as the true model. Hence, the likelihood of
deciding Hi while the true model is Hj is given by

P(Dc =Hi |Tc =Hj) =

∫
Y

δi(Y )fj(Y ) dY . (7)

We define Pmd as the aggregate likelihood of erroneously deciding
about the model under the presence of anomalous sensors, i.e.,

Pmd , P(Dc 6=Tc |Tc 6=H0) (8)

=
1

1− P(Tc =H0)

T∑
i=1

P(Dc 6=Hi,Tc =Hi) . (9)

By leveraging (7) and the definition of εi, we have

Pmd =
1

1− ε0

T∑
i=1

T∑
j=0
j 6=i

εi

∫
Y

δj(Y )fi(Y ) dY . (10)

Similarly, we define Pfa as the likelihood of erroneously detecting
anomaly when no sensor is operating anomalously, i.e.,

Pfa , P(Dc 6=Tc |Tc =H0) =

T∑
i=1

P(Dc =Hi |Tc =H0) (11)

=

T∑
i=1

∫
Y

δi(Y )f0(Y ) dY . (12)

Note that the estimation cost C(X,Ui) for any generic estimator
Ui of X under model Hi is relevant only when the decision is Hi.
Therefore, we define Ji(δi,Ui) as the average estimation cost when
the decision is Hi, i.e., Ji(δi,Ui) , Ei[C(X,Ui) | Dc = Hi] . We
also define an overall estimation cost as

J(δ,U) , max
i∈{0,...,T}

Ji(δi,Ui) , (13)

whereU , [U0, . . . ,UT ]. For making combined decisions, we aim
to minimize the estimation cost J(δ,U) under constraints on the
error rates Pmd and Pfa, i.e.,

P(α, β) ,



min(δ,U) J(δ,U)

s.t.
T∑
i=1

T∑
j=0
j 6=i

εi
1−ε0

∫
Y

δj(Y )fi(Y )dY ≤ β

T∑
i=1

∫
Y

δi(Y )f0(Y ) dY ≤ α

.

(14)

Remark 1 (Feasibility). The constraints α and β on Pfa and Pmd,
respectively, cannot be made arbitrarily small simultaneously. It can
be readily verified that under the constraint α on Pfa, there exists a
minimum feasible value for Pmd denoted by β∗(α) ∈ (0, 1). There-
fore, we must have β ≥ β∗(α) for the problem in (14) to be feasible.

Since the estimation cost appears only in J(δ,U) in (14), solving
P(α, β) can be broken down into two sub-problems. The estimators
Ui and decision rules δi(Y ), for i ∈ {0, . . . , T}, that solve (14) are
given in Theorem 1.

Theorem 1. The estimator under the model Hi, which min-
imize J(δ,U), is X̂i(Y ) defined in (4). Furthermore, for
the optimal decision rule δ, we have δi∗(Y ) = 1, where
i∗ , argmini∈{0,...,T}Ai , A0 is defined as

A0 , `0f0(Y )(Ĉp,0(Y )− u) + `T+1

T∑
i=1

εi
1− ε0

fi(Y ) , (15)

and {Ai : i ∈ {1, . . . , T}} are given by

Ai , `ifi(Y )(Ĉp,i(Y )− u)

+ `T+1

T∑
j=1,
j 6=i

εj
1− ε0

fj(Y ) + `T+2f0(Y ) , (16)

where the non-negative constants {`i : i ∈ {0, . . . T + 2}} are the
Lagrangian multipliers selected such that

∑T+2
i=0 `i = 1 , and the
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constraints in a convex optimization problem equivalent to the prob-
lem in (14) are satisfied.

4. SCALABLE DECISION RULES

The number of possible models in set S increases exponentially
with the number of sensors. Also, forming an optimal estimate for
X by the FC has high computational complexity. Motivated by
controlling these complexities, we provide a scalable approach, in
which detecting the presence of anomalies is followed by isolating
the anomalous sensors and estimatingX at the sensor level.

To formalize the approach, let Hi0 and Hi1 represent the normal
and anomalous models, respectively, for the measurements of sensor
i. We denote an estimate forX under the model Hij , for j ∈ {0, 1},
by U i

j . Under model Hij , the average local posterior cost function is
defined as

Cd
p,i(U

j
i | Y j) , Ei[C(X,U j

i ) | Y j ] , (17)
and the optimal local estimator and estimation cost are given by

X̂j
i (Y j) , arg inf

U
j
i

Cd
p,i(U

j
i | Y j) , (18)

and Ĉjp,i(Y j) , inf
U

j
i

Cd
p,i(U

j
i | Y j) . (19)

4.1. Detecting Anomalies

We model detecting the presence of anomalous sensors in the net-
work as the binary composite hypotheses testing problem

Ĥ0 : Y ∼ f0(Y |X), withX ∼ π(X)

Ĥ1 : Y 6∼ f0(Y |X), withX ∼ π(X)
. (20)

By defining Dm ∈ {Ĥ0, Ĥ1} as the decision and Tm ∈ {Ĥ0, Ĥ1} as
the true hypothesis, we are interested in designing a decision rule for
each sensor that solves

P(α̂) ,

{
min P(Dm = Ĥ0 |Tm = Ĥ1)

s.t. P(Dm = Ĥ1 |Tm = Ĥ0) ≤ α̂
, (21)

the solution to which is the Neyman-Pearson test.

Theorem 2. The solution of P(α̂) is given by

fm(Y )

f0(Y )

Ĥ1

≷
Ĥ0

γ , (22)

where the pdf fm is given by

fm(Y ) =
1

1− ε0

T∑
i=1

εifi(Y ) , (23)

and the threshold γ is chosen such that the constraint of P(α̂) is
satisfied with equality.

4.2. Isolating Anomalous Sensors

If the network is deemed to contain anomalous sensors, we isolate
them in the second step. Isolating anomalous sensors is equivalent
to selecting the correct model in a T− hypotheses testing problem,
modeled by Hi, for i ∈ {1, . . . , T}, defined in (2). Define Dis ∈
{H1, . . .HT } as the decision formed and Tis ∈ {H1, . . .HT } as the
true model. Let Pis denote the probability of isolating the wrong set
of sensors given that anomaly exists, given by

Pis , P(Dis 6=Tis |Tis 6=H0) (24)

=

T∑
i=1

T∑
j=1,
j 6=i

P(Dis =Hj |Tis =Hi)P(Tis =Hi) . (25)

Furthermore, define Pl
is as the value of Pis when X is known per-

fectly. Also, define Pu
is(Xc) as the value of Pis when X is set to

Xc. These two terms can be leveraged to establish trackable bounds
on Pis.

Lemma 1. There existsXc ∈ Rp×1 such that Pl
is≤Pis≤Pu

is(Xc).

Lemma 1 is instrumental to analyzing the error exponent of Pis

established in Theorem 3 and Theorem 4. For i ∈ {1, . . . , n} and
j ∈ {1, . . . k}, we assume (Y ji −hi(X)) to be independent of each
other and distributed according to pdf ḡi and g0 when the sensor i
has anomalous behavior and normal behavior, respectively.

Theorem 3. The decision rule that minimizes Pis is given by
DI = Hi∗ , where i∗ = arg max

i∈{1,...,T}
fi(Y ) · P(Tis =Hi) . (26)

Also, under the assumption that supp(g0) = R and supp(ḡi) = R,

lim
k→∞

− log(Pis)

k
=


min
i 6=j

C(ḡi, g0) + C(g0, ḡj), if K = 1 ,

min
i
{min{C(ḡi, g0), C(g0, ḡi)}} ,

if K > 1

,

(27)
for i, j ∈ {1, . . . , n}, where C(ḡi, g0) denotes the Chernoff infor-
mation between ḡi and g0.

The optimal decision rule defined in Theorem 3 can become com-
putationally prohibitive in large networks. Therefore, we provide an
alternative decision rule at each sensor to isolate the anomalous sen-
sors. For this purpose, define ηi as the probability of sensor i being
anomalous, given that anomaly exists. Clearly, ηi =

∑
j∈Vi

εj
1−ε0

,
where Vi is the subset of the set of hypotheses {H1 . . .HT } in which
sensor i is anomalous. Define LRi(Y i) as a marginal likelihood ra-
tio defined for sensor i, i.e.,

LRi(Y i) ,
ηif

1
i (Y i)

(1− ηi)f0
i (Y i)

. (28)

Theorem 4. The anomalous sensors can be isolated using the fol-
lowing decision rule

Dis = Hi∗ , where i∗ = arg max
i∈{1,...,T}

∏
v∈Si

LRv(Y v) . (29)

Under the assumption that supp(g0) = R and supp(ḡi) = R, the
error exponent of this decision rule is given by

lim
k→∞

− log(Pis)

k
=


min
i 6=j

C(ḡi, g0) + C(g0, ḡj), if K = 1 ,

min
i
{min{C(ḡi, g0), C(g0, ḡi)}} ,

if K > 1

,

(30)
for i, j ∈ {1, . . . , n}.

Therefore, Pis decays at the same rate that the optimal decision rule
given in Theorem 3, does.

4.3. Estimation

In the final step, we design a test to decide on the reliability of the
estimates of X formed by different sensors. Based on the outcome
of this test, the estimates deemed to be reliable are aggregated to
form a global estimate ofX . For this purpose, we provide some def-
initions relevant to the analysis in this step. The problem of deciding
whether a sensor i ∈ {1, . . . n} is anomalous is a binary hypothesis
testing problem

Hi0 : Y i ∼ f0
i (Y i |X), withX ∼ π(X)

Hi1 : Y i ∼ f1
i (Y i |X), withX ∼ π(X)

. (31)

Define δi , [δi0(Y i), δ
i
1(Y i)] as the corresponding randomized de-

cision rule for sensor i. Also, define ρi0 ∈ (0, 1) and ρi1 ∈ (0, 1)
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as the false alarm rate and miss-detection rate for sensor i based on
the decision rules in detection and isolation steps. Given a decision
Dis ∈ {Hi0,Hi1} for sensor i, we accept the local estimate from sen-
sor i only if the estimate is deemed to be reliable. Let Hir denote the
hypothesis that the estimate is reliable, and Hiu denote the hypoth-
esis that the estimate is not reliable. We define Dir ∈

{
Hir,H

i
u

}
as the decision formed on the reliability of the estimate, and de-
fine ∆i ,

[
∆i

r(Y i),∆
i
u(Y i)

]
as the randomized decision rule for

deciding about the reliability of the estimate from sensor i, where
∆i

r(Y i) is the probability that the estimate is reliable and ∆i
u(Y i) is

the probability that the estimate is not reliable. Define Pj(Dir =Hir)
as the likelihood of forming a reliable estimate, given that the deci-
sion on the sensor measurements is Hij , for j ∈ {0, 1}. Since the
estimate is accepted only under Hir, we define the estimation cost
under the decision Hij for j ∈ {0, 1} and Hir as

J ij(δ
i
j(Y i),∆

i
r(Y i),U

i
j ) , Ej [C(X,U i

j ) | Dir =Hir] . (32)
For a given Y , let the detection and isolation steps decide on the
true model of Y as Hj , for j ∈ {0, . . . , T}. Define X̂d(Y ) as the
estimate formed by fusing the reliable local estimates at the FC. The
average posterior estimation cost for the estimator X̂d(Y ) is

Jj(δ̃, ∆̃) , Ej [C(X, X̂d) | Hj ], for j ∈ {0, . . . , T} , (33)

where δ̃ , {δ1, . . . , δn} and ∆̃ , {∆1, . . . ,∆n}.

4.3.1. Local Estimators

The likelihood of forming a reliable estimate at sensor i under the
decision Hij , for j ∈ {0, 1}, is upper bounded by

Pj(Dir =Hir) =

∫
Y i

δij(Y i)∆
i
r(Y i)f

i
j (Y i)dY i ≤ 1− ρij . (34)

This implies that only a fraction of the decisions on the true model
of Y i will provide reliable estimates. We control this fraction of
decisions by choosing ρ̂i0 ≥ ρi0 and ρ̂i1 ≥ ρi1, such that

P0(Dir =Hir) ≥ 1− ρ̂i0 and P1(Dir =Hir) ≥ 1− ρ̂i1 . (35)

The decision rules ∆i and estimators U i
j , for j ∈ {0, 1}, are deter-

mined by solving

Pj(ρ̂ij) =

{
min∆i,Ui

j
J ij(δ

i
j(Y i),∆

i
r(Y i),U

i
j )

s.t. Pj(Dir =Hir) ≥ 1− ρ̂ij
, (36)

for j ∈ {0, 1}. Note that the estimators U i
j appear only in the cost

J ij(δ
i
j(Y i),∆

i
r(Y i),U

i
j ), which allows for solving the problem in

(36) by decoupling it into two sub-problems.

Theorem 5. The decision rules that minimize P0(ρ̂i0) and P1(ρ̂i1)
are

Ĉip,0(Y i)
Hi
u

≷
Hi
r

γi0 under Hi0 , (37)

Ĉip,1(Y i)
Hi
u

≷
Hi
r

γi1 under Hi1 , (38)

where γi0 and γi1 are selected such that the constraints in (35)
are satisfied with equality, and the estimation costs Ĉip,0(Y i) and
Ĉip,1(Y i) are defined in (19). The optimal estimators that min-
imize J i0(δi0(Y i),∆

i
r(Y i),U

i
0) and J i1(δi1(Y i),∆

i
r(Y i),U

i
1) are

X̂0
i (Y i) and X̂1

i (Y i), respectively, defined in (18).

5. CASE STUDY

We illustrate the asymptotic optimality of the decision rule in
Theorem 4 by comparing variations of Pis with respect to the number

of measurements for the decision rules in Theorem 3 and Theorem
4. For the plots in Fig. 1, we consider a two-sensor network, where
one sensor is anomalous at all instants. We set the function h1 and
h2 to be linear, such that, hi(X) = HiX , for i ∈ {1, 2}. We fixX
to be a scalar with pdfN (0, 4) and H1 = 1 and H2 = 4. Under the
normal setting, the sensor measurements are affected by noise com-
ponents with pdf N (0, 2). Under the anomalous setting, we set the
distributions ḡ1 and ḡ2 to N (0, 4). As observed in Fig. 1, the error
probabilities for both decision rules decay exponentially at a similar
rate with the increase in the number of sensor measurements.

2 3 4 5 6

Number of observations at each sensor

1

1.5

2

2.5

3

P

Optimal Decision Rule

Decision Rule in Theorem 4

Fig. 1. Error exponent versus number of measurements.

Next, we compare the estimation quality obtained using the scal-
able approach. For a fair comparison between the optimal scheme
and the scalable scheme, we set α and β in the optimal scheme cor-
responding to ρ̂10, ρ̂11, ρ̂20, and ρ̂21 ,and evaluate q, which is the ratio
of estimation cost in the scalable approach to that obtained using the
optimal approach.

Table 1. Estimation quality in the optimal and scalable approaches
ρ̂10 ρ̂11 ρ̂20 ρ̂21 q α β

0.3 0.45 0.35 0.46 1.124 0.18 0.38
0.25 0.42 0.41 0.53 1.158 0.192 0.46
0.21 0.58 0.26 0.64 1.174 0.154 0.51
0.35 0.45 0.34 0.52 1.104 0.214 0.41

For the results presented in Table 1, we consider a 2-sensor network
with both sensors vulnerable. We set ε1 = 0.25, ε2 = 0.15 and
ε3 = 0.2. We also consider H1 = 1 and H2 = 1, assume X to be
distributed according to Unif[0, 4], consider the distribution g0 to be
N (0, 0.75), and set the distributions ḡ1 and ḡ2 to N (0, 2). In the
results summarized in Table 1, the optimal scheme consistently per-
forms better than the scalable scheme in terms of estimation quality.

6. CONCLUSION

In this paper, we have analyzed a state estimation problem in a
sensor network in which the measurements of an unknown subset
of sensors may undergo change due to any external disturbance or
disruption. Through the analysis, we have illustrated that the detec-
tion and estimation routines are intertwined and provided the optimal
framework for estimators. Considering the infeasibility of optimal
design in large networks, we have also provided a scalable scheme
consisting of three steps: detection of anomalous behavior in the
network, isolation of anomalous sensors and a decentralized estima-
tion routine with reliability test on each local estimate. We have also
provided a scalable decision rule for isolation of affected sensors and
established its asymptotic optimality by error exponent analysis. The
theory developed in this paper is evaluated in a case study.
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