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ABSTRACT

We consider the problem of detecting heavy hitters and hi-
erarchical heavy hitters among a large number of traffic flows
modeled as random processes with unknown and potentially
heavy-tailed distributions. The objective is an active inference
strategy that determines, sequentially, which aggregatedflow
on the IP-prefix tree to probe in order to minimize the sample
complexity under a reliability constraint. We propose an ac-
tive inference strategy that induces a biased random walk on
the flow aggregation tree based on confidence bounds of sam-
ple statistics. We then establish its order optimality in terms
of both the size of the search space (i.e., the number of traffic
flows) and the reliability requirement. The result also find-
s applications in noisy group testing and adaptive sampling
with noisy response.

Index Terms— Hierarchical Heavy Hitter, Anomaly De-
tection, Active Non-Parametric Composite Hypothesis Test-
ing

1. INTRODUCTION

In Internet and other communication and financial networks,
it is a common observation that a small number of flows, re-
ferred to as heavy hitters (HH), account for the most of the
total traffic [1]. Quickly identifying the heavy hitters is thus
crucial to network stability and security. With limited sam-
pling resources at the router, however, maintaining a packet
count of each individual flow is highly inefficient, if not in-
feasible. The key to an efficient solution is to consider prefix
aggregation based on the source or destination IP addresses.
This naturally leads to a binary tree structure (as illustrated in
Fig. 1) with each node representing an aggregated flow with a
specific IP prefix. The packet count of each node on the tree
equals to the sum of the packet counts of its children.

A more complex version of the problem is hierarchical
heavy hitter (HHH) detection, in which the search for flows
with abnormal volume extends to aggregated flows in the up-
per levels of the IP prefix tree. In other words, there exist
HHHes defined recursively in an ascending order of the level
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of the tree. Specifically, an upper-level node is an HHH if its
mean remains above a given threshold after excluding all its
abnormal descendants (if any). Otherwise, this upper-level n-
ode is only a reflecting point for merely being an ancestor of
an HHH (see Fig. 1). HHH detection is of particular interest
in detectingdistributed denial-of-service attacks [2].

Each traffic flow is modeled as a stochastic process with
an unknown and potentially heavy-tailed distribution. Theob-
jective of the problem is to detect all HHHes quickly and reli-
ably by fully exploiting the hierarchical structure of the flow
aggregation. Specifically, we seek an active inference strat-
egy that determines, sequentially, which node on the tree to
probe and when to terminate the search in order to minimize
the sample complexity for a given level of detection reliabil-
ity. We are particularly interested in strategies that achieve
a sublinear scaling of the sample complexity with respect to
the number of traffic flows. In other words, accurate detection
can be achieved by examining only a diminishing fraction of
the search space as the search space grows.
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Fig. 1. A binary tree representing the flow aggregation model
with l denoting the level of the tree and(k, l) thekth node on
thel-th level ((1, 0) is an HH,(3, 1) is an HHH. Nodes(1, 1),
(1, 2), (1, 3), and(2, 2) are reflecting points).

1.1. Main Results

We develop an active inference strategy for detecting an un-
known number of HHHes among a large numberN of ag-
gregated data points with unknown distributions. The per-
formance measure is the number of samples (i.e., detection
delay) required for achieving a confidence level of1− ǫ (i.e.,
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the probability that the declared HHH set does not equal to
the true set is bounded byǫ). By fully exploiting the flow ag-
gregation model, the proposed active inference strategy has a
sample complexity that is order optimal in both the sizeN of
the search space and the reliability constraintǫ.

Referred to as Confidence Bounds based Random Walk
(CBRW), the proposed strategy consists of a global random
walk on the tree interwoven with a local confidence-bound
based test. Specifically, it induces a biased random walk that
initiates at the root of the tree and eventually arrives and ter-
minates at an HHH with the required reliability. Each move in
the random walk is guided by the output of a local confidence-
bound based sequential test carried on each child of the node
currently being visited by the random walk. This local se-
quential test module ensures that the global random walk is
more likely to move toward the HHH than move away from
it and that the random walk terminates at a true HHH with a
sufficiently high probability.

The sample complexity of CBRW is analyzed using prop-
erties of biased random walk on a tree and large deviation
results on the concentration of the sample mean statistic. We
show that the sample complexity of CBRW is in the order of
O(logN + log 1

ǫ
) provided that the gap between the mean

value of each flow count and the given threshold is bound-
ed away from0. It is thus order optimal in bothN andǫ as
determined by information-theoretic lower bounds. Of par-
ticular significance is that the effect on the sample complex-
ity from an enlarged search space (increasingN ) and an en-
hanced reliability (decreasingǫ) is additive rather than multi-
plicative. This results from the random walk structure which
effectively separates two objectives of moving to the HHHes
with O(logN) samples and declaring the HHH at the desired
confidence level withO(log 1

ǫ
) samples. The proposed strat-

egy applies to unknown heavy-tailed distribution models and
preserves its order optimality in bothN andǫ. Comprising
of calculating confidence bounds of the mean and performing
simple comparisons, the proposed strategy is computationally
efficient.

The result also finds applications in noisy group testing
and adaptive sampling with noisy response as detailed in the
full version in [3].

1.2. Related Work

Prior solutions for online detection of HHHes typically in-
volve adjusting which prefixes to monitor either at the ar-
rival of each packet [4, 5, 6], or at periodic intervals [7, 8].
A particularly relevant work is the adaptive monitoring algo-
rithm proposed by Joseet al. [7], where a fixed number of
measurement rules are adjusted at periodic intervals basedon
the aggregate packet counts matching to each of these rules.
At each time interval, the aggregate count is compared to a
heuristically chosen threshold (e.g., a fraction of link capaci-
ty), to determine whether it is an HHH, and whether the rules
need to be kept in the next interval, or expanded to monitor

the children of the prefix, or collapsed and combined with up-
stream nodes. While the proposed CBRW has a similar flavor
of moving among parent and children, which is very much
inherent to the HHH detection problem, the decision criteri-
a used to adjust the prefix is different. Instead of compar-
ing with a fixed threshold, our decision is based on statistical
metric determined by the desired detection error. Different
from the heuristic studies in the literature, the proposed strat-
egy offers performance grantee and order optimality. We pro-
vide a rigorous framework that succinctly captures the trade-
off between detection time and overall detection performance.
In [9], a quantitative group testing strategy was developedfor
HH detection based on IP prefix aggregation. It does not ad-
dress HHH detection or the issue of unknown stochastic mod-
els of traffic flows.

2. PROBLEM FORMULATION

Consider a set ofN stochastic processes conforming to a
binary-tree structure withK leaf nodes as illustrated in Fig. 1.
Let (l, k) (l = 0, 1, . . . , L, k = 1, . . . , 2L−l) denote thekth
node at levell of the tree. Let{Xk,l(t)}

∞
t=1 denote the cor-

responding random process which is independent and iden-
tically distributed with an unknown distributionfk,l and an
unknown meanµk,l. For any node(k, l), µk,l is the sum of
the mean values of the children of(k, l).

Associated with each levell of the tree is a given threshold
ηl. An HHH is defined recursively in terms ofl. Specifically,
an HHH, at levell, is a node whose mean value remains above
the thresholdηl after excluding all its decedents with mean
value above the threshold at their respective level.

An active inference strategyπ = ({at}t≥1, Tπ,Sπ) con-
sists of a sampling strategy{at}t≥1, a stopping ruleTπ, and
a terminal decision ruleSπ . The sampling strategy{at}t≥1 is
a sequence of functions mapping from past actions and obser-
vations to an aggregated data point to be sampled at the cur-
rent timet. The stopping ruleTπ determines when to termi-
nate the search, and the decision ruleSπ declares the detected
set of HHHes at the time of stopping. LetEF andPF denote,
respectively, the expectation and the probability measureun-
der distribution modelF = {f(k,l)}l=0,1,...,L

k=1,...,2L−l

. The objec-

tive is as follows: minimizeπ EFTπ, s.t. PF [Sπ 6= S] ≤ ǫ,
whereS is the true set of HHHes.

We consider a general distributionfk,l for each process.
Due to different concentration behaviors, sub-Gaussian and
heavy-tailed distributions are treated separately.

3. AN ACTIVE INFERENCE STRATEGY: CBRW

In this section, we present the Confidence Bounds based Ran-
dom Walk (CBRW) policy and establish its order-optimal per-
formance. We focus on the case of a single HHH and sub-
Gaussian distributions. Extensions to multiple HHHes detec-
tion and heavy-tailed distributions are discussed in Sec. 4.
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3.1. The CBRW Policy

The basic structure of CBRW consists of a global random-
walk module interwoven with a local CB-based sequential
test module at each step of the random walk. Specifically,
the CBRW policy performs a biased random walk on the tree
that eventually arrives and terminates at the HHH with the re-
quired reliability. Each move in the random walk (i.e., which
neighboring node to visit next) is guided by the output of the
local CB-based sequential test module. This module ensures
that the random walk is more likely to move toward the HHH
than to move away from the HHH and that the random walk
terminates at the true HHH with high probability.

Consider first the local CB-based sequential test module.
This local sequential test is carried out on a specific node (ran-
dom process){X(t)}∞t=1, where we have omitted the node
index(k, l) for simplicity. The goal is to determine whether
the mean value of{X(t)}∞t=1 is below a given thresholdη at
a confidence level of1 − β or above the threshold at a con-
fidence level of1 − α. If the former is true, the test module
outputs0, indicating this node is unlikely to be an ancestor
of an HHH or the HHH itself. If the latter is true, the out-
put is1. Let L(α, β, η) denote this local sequential test with
given parameters{α, β, η}. It sequentially collects samples
from {X(t)}∞t=1. After collecting each sample, it determines
whether to terminate the test and if yes, which value to output
based on the following rule:

• If X(s)−

√
2ξ log 2s3

α

s
> η, terminate and output1.

• If X(s) +

√
2ξ log 2s3

β

s
< η, terminate and output0.

• Otherwise, continue taking samples,

whereX(s) denotes the sample mean obtained forms
observations andξ is the distribution parameter specified in
Sec. 3.2.

We now specify the random walk on the tree based on the
outputs of the local CB-based tests. Let(k, l) denote the cur-
rent location of the random walk (which is initially set at the
root node). Consider first(k, l) is a non-leaf node withl > 0.
The node(k, l) is first probed by the local moduleL(α, β, η)
with parameters set toα = β = p0 wherep0 ∈ (0, 1 − 1

3
√
2
)

andη = ηl. If the output is0, the random walk moves to the
parent of(k, l). If the output is1, then the left child of(k, l) is
tested by the local moduleL(α, β, η) with parameters set to
α = β = p0 andη = ηl−1. If the output is1, the random walk
moves to the left child. Otherwise, the right child of(k, l) is
tested with the same set of parameters, and the random walk
moves to the right child if this test outputs1. If the outputs of
the tests at(k, l) and its children are1, 0, and0, respectively,
then(k, l) is likely to be an HHH and the random walk stays
at(k, l). When the random walk stays at the same node(k, l),
the same tests are repeated on(k, l) and its children with an
increased confidence level. We increase the confidence level
by dividingα andβ by 2 iteratively. When the current val-
ue ofα andβ becomes smaller than ǫ

3LCH
p0

, the random walk

stops and declares(k, l) as the HHH. The value of

C
H
p0 =

1
(
1− exp(−2(1− 2(1− p0)3)2)

)2 (1)

ensures the desired confidence level of1 − ǫ at detection
of the HHH. If the random walk moves to a new location
the values ofα andβ is reset top0. When the random walk
arrives at a leaf node(k, l) with l = 0, the leaf node is
tested by the local moduleL(α, β, η) with parameters set to
α = ǫ

3LCH
p0

, β = p0 andη = η0. If the output is1, the ran-

dom walk stops and declares(k, l) as the HHH. Otherwise,
the random walk moves to the parent of(k, l). A pseudo-code
for CBRW is given in [3].

3.2. Performance Analysis
We first analyze the sample complexity of the local CB-based
sequential test moduleL(α, β, η) in the lemma below. We
then analyze the behavior of the random walk to establish the
number of times that the local sequential test is carried out.

Recall that a real-valued random variableX is called
sub-Gaussian [10] if, for allλ ∈ (−∞,∞), E[eλ(X−E[X])] ≤

eξλ
2/2 for some constantξ > 0. We assume (an upper

bound on)ξ is known. For sub-Gaussian random variables,
Chernoff-Hoeffding concentration inequalities hold.

Lemma 1 Let µ denote the expected value of an i.i.d. sub-
Gaussian random process {X(t)}∞t=1. Let TL be the stop-
ping time of the CB-based sequential test L(α, β, η) applied
to {X(t)}∞t=1. We have, in the case of µ > η,

P[X(TL) +

√
2ξ log

2T3

L

β

T
< η] ≤ β, (2)

E[TL] ≤
48

(µ− η)2
log

24 3

√
2
α

(µ− η)2
+ 2. (3)

In the case of µ < η,

P[X(TL)−

√
2ξ log

2T3

L

α

2T
> η] ≤ α, (4)

E[TL] ≤
48

(µ− η)2
log

24 3

√
2
β

(µ− η)2
+ 2. (5)

Proof: Omitted due to space limit. See a detailed proof in [3].
The inequalities (2) and (4) establish the confidence levels

for the local sequential CB-based test. Both results on the
confidence levels and the sample complexity are based on the
Chernoff-Hoeffding concentration inequalities.

The sample complexity of CBRW is order optimal in both
N and 1

ǫ
as stated in Theorem 1 below.

Theorem 1 Assume that there exists δ > 0 such that µk,l −
ηl ≥ δ for all (k, l) (l = 0, 1, . . . , L, k = 1, . . . , 2L−l). We
have

EF [TCBRW ] = O(log2 N + log
1

ǫ
), (6)
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and

PF [SCBRW 6= S] ≤ ǫ. (7)

Proof: Omitted due to space limit. See a detailed and finite-
time analysis in [3].

4. EXTENSIONS

Detecting|S| > 1 HHHes with|S| known can be easily im-
plemented by sequentially locating the HHHes one by one.
We assume that each HHH can be removed after it is locat-
ed by CBRW1. To ensure that the reliability constraint holds,
we replaceǫ with ǫ

|S| in each search of a single HHH. The
reliability constraint holds by union bound on the error prob-
abilities of the searches for a single HHH.

When the number of HHHes is unknown, but an upper
boundSmax ≥ |S| on the number of HHHHes is known,
we can similarly detect the HHHes one by one. To ensure
that the reliability constraint holds, we replaceǫ with ǫ

2Smax
in

each search of a single HHH. The stopping rule for the overall
search can be implemented by testing the root node. Specifi-
cally, the root node is tested byL(ǫ0, ǫ0, ηL) with ǫ0 = ǫ

2Smax

everyLCH
p0

steps in the random walk. The reliability con-
straint holds by union bound on the error probabilities of the
searches for a single HHH and error in stopping the overal-
l search before finding all HHHes. The sample complexi-
ties of finding single HHHes simply add up toO(|S| logK +
|S| log 1

ǫ
) overall sample complexity.

The extension to more general distribution models can be
implemented by modifying the local CB-based testL in a way
that the confidence levels remain the same. As a result, the
behavior of the random walk on the tree remains the same.

Specifically, for heavy-tailed distributions with a finite
b’th (1 < b < 2) moment we modify the testL as follows.

• If X̂(s, α)−4u1/b(
log 2s3

α

s
)
b−1

b > η, terminate and output1.

• If X̂(s, β)+4u1/b(
log 2s3

β

s
)
b−1

b < η, terminate and output0.

• Otherwise, continue taking samples,

whereu is an upper bound onE[Xb] andX̂(s, p) is the
truncated sample mean defined as

X̂(s, p) =
1

s

s∑

t=1

X(t)1{
|X(t)| ≤ (

ut

log 1
p

)1/b
}

. (8)

The resulting CBRW achieves the sameO(logN+log 1
ǫ
)

sample complexity. See [3] for the detailed analysis.

5. SIMULATION

We compare the performance of CBRW with the strategy pro-
posed in [7]. We consider a number of randomly chosen HH-
Hes and a threshold set to5% of the expected total traffic at

1For example, the packet count of each detected HHH can be subtracted
from the packet count of the parents.
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Fig. 2. The comparison between the detection error of CBRW and
the strategy proposed in [7]on a graph withL = 8, 12 HHHes and
24 counters (on the left) and on a graph withL = 9, 13 HHHes and
26 counters (on the right).
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Fig. 3. The comparison between the Precision/Recall of CBRW and
the strategy proposed in [7] on a graph withL = 8, 12 HHHes and
24 counters (on the left) and on a graph withL = 9, 13 HHHes and
26 counters (on the right).

leaf nodes. The traffic at the leaf nodes is randomly generat-
ed according to Poisson distributions with randomly chosen
parameters. The results are obtained from 1000 Monte-Carlo
runs. As shown in Fig. 2, while the existing strategy provides
no reliability guarantee, CBRW satisfies the required error
rate. This also shows that CBRW can be conservative and
the algorithm parameters such asǫ can be adjusted to further
reduce the detection time for a given reliability constraint.

In order to show a fair comparison, we also consider the
performance measures used in [7]: Precision defined as the
percentage of true HHHes in the detected set (|S∩Sπ|

|Sπ| × 100),
and Recall defined as the percentage of detected HHHes
( |S∩Sπ|

|S| × 100). As shown in Fig. 3, CBRW shows a higher
Precision and Recall in comparison to the existing strategy.

6. CONCLUSION

In this paper, we studied the problem of detecting HHHes
among a large number of traffic flows modeled as random
processes with unknown distributions. The proposed strate-
gy detects the HHHes at the required confidence level with
an order-optimal logarithmic sample complexity in both the
problem size and the reliability constraint. The result also
finds applications in noisy group testing and adaptive sam-
pling with noisy response as detailed in the full version in [3].
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