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ABSTRACT of the tree. Specifically, an upper-level node is an HHH if its

We consider the problem of detecting heavy hitters and hif"eéan remains above a given threshold_ after .excluding all its
erarchical heavy hitters among a large number of traffic flow&Pnormal descendants (if any). Otherwise, this uppei-feve
modeled as random processes with unknown and potentialfA€ iS only a reflecting point for merely being an ancestor of
heavy-tailed distributions. The objective is an activenehce ~2n HHH (see Fig. 1). HHH detection is of particular interest
strategy that determines, sequentially, which aggredgtied " detectingdistributed denial-of-service attacks [2].
on the IP-prefix tree to probe in order to minimize the sample ~ Each traffic flow is modeled as a stochastic process with
complexity under a reliability constraint. We propose an ac@n unknown and potentially heavy-tailed distribution. Bhe
tive inference strategy that induces a biased random walk dfctive of the problem is to detect all HHHes quickly and-reli
the flow aggregation tree based on confidence bounds of sa@Ply by fully exploiting the hierarchical structure of the
ple statistics. We then establish its order optimality imte ~ @ggregation. Specifically, we seek an active inferencé-stra
of both the size of the search space (i.e., the number ofdraffegy that determines, sequentially, which node on the tree to
flows) and the reliability requirement. The result also find-Probe and when to terminate the search in order to minimize

s applications in noisy group testing and adaptive samplin§!€ Sample complexity for a given level of detection reliabi
with noisy response. ity. We are particularly interested in strategies that ewhi

a sublinear scaling of the sample complexity with respect to
the number of traffic flows. In other words, accurate detectio
can be achieved by examining only a diminishing fraction of
ing the search space as the search space grows.

Index Terms— Hierarchical Heavy Hitter, Anomaly De-
tection, Active Non-Parametric Composite Hypothesis -Test

1. INTRODUCTION )
In Internet and other communication and financial networks,
it is a common observation that a small number of flows, re-  ¢=2
ferred to as heavy hitters (HH), account for the most of the
total traffic [1]. Quickly identifying the heavy hitters ibus 1) O @D
crucial to network stability and security. With limited sam
pling resources at the router, however, maintaining a gacke
count of each individual flow is highly inefficient, if not in- = g) g) 9) 9) g) (((?O) 9) g)
feasible. The key to an efficient solution is to consider grefi
aggregation based on the source or destination IP addressggy. 1. A binary tree representing the flow aggregation model
This naturally leads to a binary tree structure (as illusttan  with ; denoting the level of the tree aré, /) the kth node on
Fig. 1) with each node representing an aggregated flow with ghe/-th level (1, 0) is an HH, (3, 1) is an HHH. Nodes1, 1),
specific IP prefix. The packet count of each node on the treg1, 2), (1, 3), and(2, 2) are reflecting points).
equals to the sum of the packet counts of its children.

A more complex version of the problem is hierarchical
heavy hitter (HHH) detection, in which the search for flows

with abnormal volume extends to aggregated flows in the uppye develop an active inference strategy for detecting an un-
per levels of the IP prefix tree. In other words, there exisinown number of HHHes among a large numbérof ag-
HHHes defined recursively in an ascending order of the |eV9d1regated data points with unknown distributions. The per-
0This work was supported by the U.S. Army Research Office uGdent ~ formance measure is t_he_ number ‘_Jf samples (i.e., deteCtion
WO911NF-17-1-0464. delay) required for achieving a confidence level of ¢ (i.e.,

(4,1)

1.1. Main Results

978-1-5386-4658-8/18/$31.00 ©2018 IEEE 6917 ICASSP 2018



the probability that the declared HHH set does not equal téhe children of the prefix, or collapsed and combined with up-
the true set is bounded key. By fully exploiting the flow ag-  stream nodes. While the proposed CBRW has a similar flavor
gregation model, the proposed active inference strategyha of moving among parent and children, which is very much
sample complexity that is order optimal in both the sk®f  inherent to the HHH detection problem, the decision ckiteri
the search space and the reliability constraint a used to adjust the prefix is different. Instead of compar-
Referred to as Confidence Bounds based Random Walkg with a fixed threshold, our decision is based on staéiktic
(CBRW), the proposed strategy consists of a global randormmetric determined by the desired detection error. Differen
walk on the tree interwoven with a local confidence-boundrom the heuristic studies in the literature, the propogeat-s
based test. Specifically, it induces a biased random watk th&gy offers performance grantee and order optimality. We pro
initiates at the root of the tree and eventually arrives @nd t vide a rigorous framework that succinctly captures thedrad
minates at an HHH with the required reliability. Each move inoff between detection time and overall detection perforoean
the random walk is guided by the output of a local confidencehn [9], a quantitative group testing strategy was develdped
bound based sequential test carried on each child of the nod#H detection based on IP prefix aggregation. It does not ad-
currently being visited by the random walk. This local se-dress HHH detection or the issue of unknown stochastic mod-
guential test module ensures that the global random walk igls of traffic flows.
more likely to move toward the HHH than move away from
it and that the random walk terminates at a true HHH with a 2. PROBLEM FORMULATION

SUﬁ_II_Cr:(ZnStgr:'?g f(;?nb?te)ilif[y.of CBRW is analvzed using oro Consider a set ofV stochastic processes conforming to a
P piexity Y g prop binary-tree structure witkk” leaf nodes as illustrated in Fig. 1.

B e o e 7 Jrge vt ()~ 0.1, ~ 1.2 e hai
P " _hode at level of the tree. Let{ X} ;(¢)}$2, denote the cor-

show that the sample complexity of CBRW is in the order Ofresponding random process which is independent and iden-

O(log N + log 1) provided that the gap between the mean,. L . L
value of each flow count and the given threshold is boundt-ICaIIy distributed with an unknown distributioy.,; and an

. - . unknown meanu ;. For any nod€k, 1), uy, is the sum of
ed away fromD. It is thus order optimal in botlV ande as the mean values of the children @, {).

[ inf ion-th icl . Of par-
determined by information-theoretic lower bounds. Of par Associated with each levebf the tree is a given threshold

ticular significance is that the effect on the sample complex ) . . _ e
9 P P An HHH is defined recursively in terms af Specifically,

ity from an enlarged search space (increasifjgand an en- M- . .
hanced reliability (decreasing is additive rather than multi- 2" HHH, at level, is a node whose mean value remains above

plicative. This results from the random walk structure whic the thresholdy, after excluding all its decedents with mean

effectively separates two objectives of moving to the HHHe&/alU€ above the threshold at their respective level.

with O(log N') samples and declaring the HHH at the desired . AN active inference strategy = ({a¢}:>1, T, Sx) con-

confidence level wittD(log ) samples. The proposed strat- SIStS of a sampling stratedy; }>1, & stopping rull’, and

egy applies to unknown heavy-tailed distribution modets an & términal decision rulé. The sampling strategli; };>1 is

preserves its order optimality in bofi§ ande. Comprising & Séquence of functions mapping from past actions and obser-

of calculating confidence bounds of the mean and performin&tions to an aggregated data point to be sampled at the cur-

simple comparisons, the proposed strategy is computdijona rent timet. The stopping rul?ﬂ_r determines when to termi-

efficient. nate the search, and the decision bijedeclares the detected
The result also finds applications in noisy group testing®¢t Of HHHes at the time of stopping. L andP denote,

and adaptive sampling with noisy response as detailed in tH§SPECtiVely, the expectation and the probability measare

full version in [3] der distribution modelF = {f(;}i=0,1,..... . The objec-
) k=1,...20!

1.2. Related Work tive is as follows: minimizg ExT;, st. Px[S; # S] < ¢,

whereS is the true set of HHHes.
Prior solutions for online detection of HHHes typically in-  We consider a general distributigi; for each process.
volve adjusting which prefixes to monitor either at the ar-Due to different concentration behaviors, sub-Gaussi@h an
rival of each packet [4, 5, 6], or at periodic intervals [7, 8] heavy-tailed distributions are treated separately.
A particularly relevant work is the adaptive monitoring@lg
rithm proposed by Josat al. [7], where a fixed number of 3. AN ACTIVE INFERENCE STRATEGY: CBRW
measurement rules are adjusted at periodic intervals lmased
the aggregate packet counts matching to each of these rulés.this section, we present the Confidence Bounds based Ran-
At each time interval, the aggregate count is compared to dom Walk (CBRW) policy and establish its order-optimal per-
heuristically chosen threshold (e.g., a fraction of linpaai- formance. We focus on the case of a single HHH and sub-
ty), to determine whether it is an HHH, and whether the rulesGaussian distributions. Extensions to multiple HHHes dete
need to be kept in the next interval, or expanded to monitotion and heavy-tailed distributions are discussed in Sec. 4
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3.1. The CBRW Policy stops and declard#, [) as the HHH. The value of
1

The basic structure of CBRW consists of a global random- o = .
walk module interwoven with a local CB-based sequential <1 —exp(—2(1 — 2(1 _p0)3)2)>
test module at each step of the random walk. Specifically,
the CBRW policy performs a b'?sed random walk on the tre%nsures the desired confidence levellof ¢ at detection
that eventually arrives and terminates at the HHH with the re

. e . . . _of the HHH. If the random walk moves to a new location
quired reliability. Each move in the random walk (i.e., whic .
. . " . . the values ofv and g is reset tgpg. When the random walk
neighboring node to visit next) is guided by the output of the_ . ) )
. . arrives at a leaf nodé¢k,!) with [ = 0, the leaf node is
local CB-based sequential test module. This module ensures .
. . ested by the local modulé(«, 8,7) with parameters set to
that the random walk is more likely to move toward the HHHa e 3 and If the output isl. the ran
than to move away from the HHH and that the random walk~ ~ 3LCI" Po @litin = To- P ’
terminates at the true HHH with high probability. dom walk stops and declar¢s, /) as the HHH. Otherwise,

Consider first the local CB-based sequential test moduléhe random walk moves to the paren{(6fi). A pseudo-code
This local sequential test is carried out on a specific naate (r  for CBRW is given in [3].
dom processY X (¢)}72,, where we have omitted the node 3 5 performance Analysis

index (k, 1) for simplicity. The goal is to determine whether : .
the mean value of X ()22, is below a given thresholg at We first analyze the sample complexity of the local CB-based

a confidence level of — 3 or above the threshold at a con- Séquential test modulé(a, 5, 7) in the lemma below. We
fidence level ofl — a. If the former is true, the test module then analyze the behavior of the random walk to establish the
outputs0, indicating this node is unlikely to be an ancestornumber of times that the local sequential test is carried out
of an HHH or the HHH itself. If the latter is true, the out- Recall that a real-valued random variab¥e is called
putisl. Let L(«, 3,7n) denote this local sequential test with sub-Gaussian [10] if, for al\ € (—oo, c0), E[eMX EXD] <
given parameter$c, 5, 7}. It sequentially collects samples (¢3*/2 for some constanf > 0. We assume (an upper
from { X (¢)};2,. After collecting each sample, it determines oynd on is known. For sub-Gaussian random variables,

whether to terminate the test and if yes, which value to thUChernoff-Hoeffding concentration inequalities hold
based on the following rule: '

1)

Lemma 1 Let ;. denote the expected value of an i.i.d. sub-

oy o[ 26log 28 : Gaussian random process { X (¢)}$2,. Let T be the stop-

o If X(s) s~ >, terminate and output ping time of the CB-based sequential test £(av, 3,7) applied
to { X (¢)}:2,. We have, in the case of 1 > 7,

og 253
o If X(s)+ 2“?” < 7, terminate and output 3
_ _ ) _ 2¢ log 2—;“‘

e Otherwise, continue taking samples, P[X(T:) + —7 < n] < B, 2

where X (s) denotes the sample mean obtained form 48 243/%
observations and is the distribution parameter specified in E[T,] < 5 log 7 +2. ()
Sec. 32 (1 —m) (1 —m)

We now specify the random walk on the tree based on thdn the case of i <7,
outputs of the local CB-based tests. [(gt!) denote the cur- p
rent location of the random walk (which is initially set aeth PX(T2) — | 2 log £ S <a @
root node). Consider firgk, /) is a non-leaf node with > 0. “ 2T m=
The nodgk, 1) is first probed by the local modul&(«, 3, 1) o4 3/2

H 1

with parameters set t@ = 3 = po wherepo € (0,1 — -5) E[T] < —38 77 log »3)2 Yo ®)
andn = ;. If the output is0, the random walk moves to the (1= (1=

parentof(k, 1). If the outputisL, then the left child ofk, 1) is Proof: letted _d_ue to space limit. Se_e a detalled_proof in[3].
tested by the local modu[é(a, 6, 77) with parameters set to The |nequal|t|es (2) and (4) establish the confidence levels
a = f = po andn = n;_;. Ifthe outputisl, the randomwalk for the local sequential CB-based test. Both results on the
moves to the left child. Otherwise, the right child(@f /) is  confidence levels and the sample complexity are based on the
tested with the same set of parameters, and the random walthernoff-Hoeffding concentration inequalities.
moves to the right child if this test outputs|f the outputs of The sample complexity of CBRW is order optimal in both
the tests afk, !) and its children are, 0, and0, respectively, N andl as stated in Theorem 1 below.
then(k,1) is likely to be an HHH and the random walk stays ‘
at(k,1). When the random walk stays at the same n@gée), ~ Theorem 1 Assume that there exists § > 0 such that ik, —
the same tests are repeated(bn) and its children with an 7 > é for all (k,1) (1 = 0,1,..., L,k = 1,...,257)). We
increased confidence level. We increase the confidence leviehve
by dividing « and 8 by 2 iteratively. When the current val- 1
ue ofa and3 becomes smaller thagj-&7, the random walk Er[Tecrw] = O(logy N + log Z), (6)

Pro
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and

Pr(Scprw # S) <e. (7
Proof: Omitted due to space limit. See a detailed and finite-
time analysis in [3].
4. EXTENSIONS

 adaand

poooe
-

Detecting|S| > 1 HHHes with|S| known can be easily im-

plemented by sequentially locating the HHHes one by oneFig. 2. The comparison between the detection error of CBRW and
We assume that each HHH can be removed after it is locathe strategy proposed in [7]on a graph with= 8, 12 HHHes and

ed by CBRW. To ensure that the reliability constraint holds, 24 counters (on the left) and on a graph with= 9, 13 HHHes and
we replacer with & in each search of a single HHH. The 26 counters (on the right).

reliability constraint holds by union bound on the errortpro
abilities of the searches for a single HHH.

When the number of HHHes is unknown, but an uppel .
bound Smax > |S| on the number of HHHHes is known, :.
we can similarly detect the HHHes one by one. To ensur: : ~
that the reliability constraint holds, we replaceith 5=— in
each search of a single HHH. The stopping rule for the overa
search can be implemented by testing the root node. Speci  * © 7 clwoanine * 7
cally, the root node is tested (e, €0, 171, ) With g = ﬁ
everyLCIﬁ Steps in the random walk. The re“ab'“ty con- F|g 3. The Comparisor.l between the Precision/Recall of CBRW and
straint holds by union bound on the error probabilities @f th the strategy proposed in [7] on a graph with= 8, 12 HHHes and
searches for a single HHH and error in stopping the overal? counters (on the left) and on a graph witk= 9, 13 HHHes and
| search before finding all HHHes. The sample complexi—26 counters (on the right).
ties of finding single HHHes simply add up(|S| log K +
|S|log ¢) overall sample complexity. leaf nodes. The traffic at the leaf nodes is randomly generat-

The extension to more general distribution models can bgqd according to Poisson distributions with randomly chosen
implemented by modifying the local CB-based téshaway  parameters. The results are obtained from 1000 Monte-Carlo
that the confidence levels remain the same. As a result, th@ins. As shown in Fig. 2, while the existing strategy proside
behavior of the random walk on the tree remains the same. no reliability guarantee, CBRW satisfies the required error

Specifically, for heavy-tailed distributions with a finite rate. This also shows that CBRW can be conservative and
v'th (1 < b < 2) moment we modify the test as follows. the algorithm parameters suchesan be adjusted to further

~ 1/b log 222 b1 ) reduce the detection time for a given reliability consttain

o If X(s, ) —du (=) 7 >, terminate and output In order to show a fair comparison, we also consider the

o If y(s7ﬁ)+4u1/b(ﬁ)b% < 1, terminate and outpat performance measures used in [7]: Precision defined as the
percentage of true HHHes in the detected é%@fz‘l' x 100),
and Recall defined as the percentage of detected HHHes

wherew is an upper bound oR[X?] and)?(s,p) is the (\Sﬁs,,\ « 100). As shown in Fig. 3, CBRW shows a higher

truncated sample mean defined as S| . ; o
P Precision and Recall in comparison to the existing strategy
ut
1—1)1/b} . (8)
og E

100 100
y’*/—-"—“—_—_“‘ gt
9%

e Otherwise, continue taking samples,

X(s,p) = EZX(t)ﬂ {IX(t)I < ( 6. CONCLUSION

The resulting CBRW achieves the sa@og N +log 1)  In this paper, we studied the problem of detecting HHHes

sample complexity. See [3] for the detailed analysis. among a large number of traffic flows modeled as random
processes with unknown distributions. The proposed strate
5. SIMULATION gy detects the HHHes at the required confidence level with

an order-optimal logarithmic sample complexity in both the
We compare the performance of CBRW with the strategy proproblem size and the reliability constraint. The resulbals
posed in [7]. We consider a number of randomly chosen HHfinds applications in noisy group testing and adaptive sam-
Hes and a threshold set 5% of the expected total traffic at pling with noisy response as detailed in the full versiorgh [

1For example, the packet count of each detected HHH can beastat
from the packet count of the parents.
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