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ABSTRACT

A method for room identification is proposed based on the reverber-
ation properties of multichannel speech recordings. The approach
exploits the dependence of spectral decay statistics on the reverber-
ation time of a room. The average negative-side variance within 1/3-
octave bands is proposed as the identifying feature and shown to be
effective in a classification experiment. However, negative-side vari-
ance is also dependent on the direct-to-reverberant energy ratio. The
resulting sensitivity to different spatial configurations of source and
microphones within a room are mitigated using a novel reverberation
enhancement algorithm. A classification experiment using speech
convolved with measured impulse responses and contaminated with
environmental noise demonstrates the effectiveness of the proposed
method, achieving 79% correct identification in the most demanding
condition compared to 40% using unenhanced signals.

Index Terms— Room identification, Scene awareness, Rever-
beration, Classification, Microphone array

1. INTRODUCTION

Acoustic room identification is an emerging topic with many po-
tential applications, including forensics [1], multimedia content la-
belling [2], robot navigation and location-aware voice interfaces.
The aim is to be able to identify the specific room in which a
speech recording was made given a limited number of previously
seen rooms. A variety of features may be helpful including esti-
mating the geometry [3, 4, 5, 6, 7], the background noise [2] and
reverberation characteristics [1, 8].

Frequency-dependent reverberation time is largely independent
of the source-microphone arrangement [9] and has shown promis-
ing discriminative power when calculated directly from measured
acoustic impulse responses (AIRs) [1]. However, blindly estimating
frequency-dependent reverberation time from reverberant speech is
challenging and has, thus far, received little attention. In the re-
cent Acoustic Characterization of Environments (ACE) Challenge
[10, 11] there was only one submission which attempted it [12]
(based on [13]) and it used a model to predict the low frequency
values from high frequency values, rather than actually estimating
them. Clearly such predictions do not add any additional informa-
tion if the aim is to infer the identity of the room in which a recording
was made.

Blind estimation of fullband reverberation time (RT) has re-
ceived considerable attention [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
due, predominantly, to its use in speech dereverberation [24, 25, 26].
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The approach to RT estimation used in [21, 22, 23] exploits the ob-
servation that the distribution of spectral decay rates is dependent on
the RT and the latter can be predicted by appropriate mapping of the
negative-side variance (NSV) statistic. The NSV has also been used
to predict the perceived level of reverberation [22], exploiting the
fact that the NSV depends on the direct-to-reverberant ratio (DRR)
as well as the RT. In [23], signals from 2 microphones were com-
bined in such a way as to attenuate the coherent component of the
signal, due to the direct path and early reflections. This was shown
to reduce the dependence of the NSV on the source-microphone dis-
tance (or equivalently DRR) for synthesised AIRs under noise-free
conditions.

The contributions of this work are to (i) propose room identifica-
tion directly from frequency-dependent NSVs, (ii) propose a novel
approach to estimating a blocking matrix which attenuates the direct
path and early reflections, and (iii) demonstrate the benefit of the
proposed enhancement to the proposed classification.

In Sec. 2 the concept of NSV is reviewed. Our proposed meth-
ods for room identification and reverberation enhancement are pre-
sented in Sec. 3 and Sec. 4, respectively, and evaluated in Sec. 5.
Finally, conclusions are drawn in Sec. 6.

2. BACKGROUND TO NEGATIVE-SIDE VARIANCE

Expressed using a convolutive transfer function model [27, 28] in
the short term Fourier transform (STFT) domain, the signal received
at microphone m due to the source signal, S(`, k), is

Xm(`, k) =

K∑
k′=0

∞∑
`′=−∞

Hm(`′, k, k′)S(`− `′, k) (1)

where Hm(`′, k, k′) is the manifestation in the STFT domain of the
transfer function from the source to microphone m, ` is the frame
index and k is the frequency index. For simplicity, we assume that
Hm(`′, k, k′) = 0, ∀k 6= k′.

The reverberant properties of a room are encapsulated in the AIR
which Polack [29] modelled as a realisation of a zero-mean Gaussian
random sequence multiplied by an exponential function. Extended
to the convolutive transfer function model of (1), the energy decay
can be modelled in terms of the power spectral density (PSD) of the
direct path, βm,d(k), the PSD of the reverberation βm,r(k) and a
frequency-dependent negative decay rate λh(k) [27]

E
{
|Hm(`, k)|2

}
= βm,d(k)δ0` + βm,r(k)u(`− 1)eλh(k)` (2)

where E {·} is the expectation operator, δ0` is the Kronecker delta
function, which is 1 when ` = 0 and 0 otherwise, and u(·) is the
Heaviside step function.
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Considering the case when the DRR is low, i.e. βm,d(k) �
βm,r(k) the Heaviside function suggests that the reverberant signal
Xm(`, k) will quickly track the increase in energy at speech onsets
but the corresponding decrease in energy at speech offsets will be
determined by λh(k) [21]. More formally, if λs(`, k) is the negative
decay rate of S(`, k),

λx(`, k) ≈ max {λh(k), λs(`, k)} (3)

is the negative decay rate of the reverberant speech. Fitting a straight
line to the logarithm of an exponentially decaying sequence, the gra-
dient is proportional to the negative decay rate. Positive gradients,
due to speech onsets, track the increases in speech energy whilst neg-
ative gradients are limited by the room. Gradients which are more
negative correspond to faster decays and smaller RTs. Since the dis-
tribution of gradients is skewed, and only the negative part is related
to the reverberation, the negative part of the distribution is used to
determine the NSV from which a good estimate of the RT can be
obtained [21].

However, as observed in [23], when the DRR is high, i.e.
βm,d(k)� βm,r(k) the convolution of (1) is dominated by the Kro-
necker delta function and so the approximation in (3) is no longer
valid. Large negative gradients can occur, regardless of the RT. It
has been shown that attenuating the early reflection as well as the
direct path through decorrelation leads to NSV values which are less
dependent on the DRR and than those obtained from the microphone
signals directly [23].

3. ROOM IDENTIFICATION USING NSV

Room identification is proposed in the following, based on
frequency-dependent NSV features.

3.1. Feature extraction

Let a(`, k) =
[
A1(`, k) A2(`, k) . . . AN (`, k)

]T , where (·)T
is the transpose operator, be an N channel reverberant speech
signal. The negative decay rate, λa,n(r, k) is the gradient of
ln{|An(`, k)|} over frames ` = {rR, rR+ 1, . . . , rR+ Lλ},
where Lλ and R determine the interval over which decays are es-
timated and the increment between successive estimates, respec-
tively. The set of all negative-valued gradients in STFT frequency
bin k across all channels is denoted λ(k). That is λ(k) =
{λa,n(r, k) : λa,n(r, k) < 0, ∀r, ∀n}. The NSV for STFT fre-
quency bin k is ζ(k) = var {λ(k)}. Averaging across STFT fre-
quency bins, the mean NSV within the j th subband is denoted ψj
and ψ =

[
ψ1 ψ2 . . . ψJ

]T is the proposed feature vector used for
room identification.

3.2. Classifier

Each utterance in the dataset is represented by a J-element feature
vector, ψ and is labelled according to one of I rooms. A sub-
set of the utterances belonging to the ith room are used to fit the
parameters of a J-dimensional multi-variate Gaussian distribution
with mean µi = [µi,1, ..., µi,J ]

T and diagonal covariance matrix
Σi = diag

(
σ2
i,1, ..., σ

2
i,J

)
.

Assuming the NSVs in different frequency bands are uncorre-
lated, the probability that an unseen utterance with feature vector
ψ′ =

[
ψ′1 ψ

′
2 . . . ψ

′
J

]T was observed in a room with mean µi and

covariance Σi is given by

p(ψ′|µi,Σi) =

J∏
j=1

p(ψ′j |µi, σ
2
i,j) (4)

=

J∏
j=1

1

σi,j
√
2π
e

(
−
ψ′j−µi,j

2σ2
i,j

)
. (5)

For the closed-set room identification task considered here, the
room, i, which maximises p(ψ′|µi,Σi) is chosen.

4. PROPOSED ENHANCEMENT

In order to reduce the effect of the direct path and early reflections on
the NSV, we propose to design blocking filters based on an explicit
estimate of the the relative transfer function of the direct path and
early reflections.

The observed signal, Ym(`, k), at the mth microphone in an ar-
ray is composed of the reverberant speech, Xm(`, k), as defined in
(1), and noise, Vm(`, k), which is uncorrelated withXm(`, k). Since
the reverberation enhancement is performed independently at each
frequency, the dependence on k is dropped for the remainder of this
section. The signals received by an array of M microphones are

y(`) = x(`) + v(`) (6)

where y(`) =
[
Y1(`) Y2(`) . . . YM (`)

]T and x(`) and v(`) are
similarly defined.

From (1), let the early component of Xm be given by

X(e)
m (`) = Hm(0)S(`) (7)

where Hm(0) represents the early transfer function which includes
the direct path and earliest arriving reflections. The number of re-
flections depends on the geometry of the room, source-microphone
configuration and STFT frame length. During speech onsets, before
late reflections start to arrive, y(`) is assumed to consist of only the
early component and noise

y(e)(`) = x(e)(`) + v(`) (8)

= h(e)S(`) + v(`) (9)

where h(e) =
[
H1(0) H2(0) . . . HM (0)

]T . Without loss of gen-
erality, taking m = 1 as the reference microphone, the relative early
transfer function is

g =
[
1 H2(0)
H1(0)

. . . HM (0)
H1(0)

]T
(10)

and

x(e)(`) = gX1(`). (11)

The following PSD matrices are defined Φy = E
{
yyH

}
,

Φy
(e) = E

{
y(e)(y(e))H

}
, Φx

(e) = E
{

x(e)(x(e))H
}

and Φv =

E
{
vvH

}
, where (·)H is the conjugate transpose operator.

Using (11), the PSD matrix of the noisy received signal during
speech onsets is

Φy
(e) = φx1

(e)ggH + Φv (12)
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Room RT [s]

Lecture Room 1 0.64
Lecture Room 2 1.25
Meeting Room 1 0.44
Meeting Room 2 0.37
Office 2 0.48

Table 1. Fullband RT for each room in dataset, determined from the
measured AIRs [11].

where φx1
(e) = E

{
X1

(e)(`)X1
(e)(`)∗

}
and (·)∗ denotes the com-

plex conjugate operator. Since Φx
(e) is rank 1 by definition, dur-

ing time intervals when there is no late reverberation, the general-
ized eigenvalue (GEV) solution to the matrix pencil (Φy

(e),Φv)
has only one generalized eigenvalue greater than 1 [30, 31]. The
corresponding eigenvector, f , is a scaled and rotated version of the
desired relative early transfer function, which can be recovered by
the normalization

g =
Φvf

e1Φvf
(13)

where e1 =
[
1 0 . . . 0

]
.

We propose to estimate Φy
(e) as the ensemble mean of

y(`)y(`)H over only those time intervals which are deemed to co-
incide with speech onsets where the level of residual reverberation
is comparatively low. To identify suitable intervals, a time-varying
estimate of Φy(`) is obtained using recursive smoothing as

Φ̂y(`) = αΦ̂y(`− 1) + (1− α)y(`)y(`)H . (14)

The covariance, i.e. off diagonal, terms of Φ̂y(`) are a measure
of the similarity between pairs of microphone signals that includes
scaling due to the source power. Rising edges in the cross-PSD terms
are therefore associated with speech onsets. To best satisfy the con-
dition that the level of reverberation is low compared to the direct
path and early reflections, a set of candidates frames are identified
as the peaks in the cross-PSD. A candidate peak with level B is re-
tained if it satisfies two criteria: i) Energy —B must be above the γ th

percentile across all the candidates; and ii) Onset — no other peaks
that lie within the preceding τ s can exceed ωB. Having identified
the locations of peaks associated with the end of speech onsets, the
frames in the ρ s immediately preceding these peaks are included in
the estimation of Φy

(e).
The noise-only PSD matrix, Φv is estimated as the ensemble

mean of y(`)y(`)H over the first 100 frames of a recording.
Having obtained g, M − 1 enhanced reverberant signals are ob-

tained [32]

Zm−1(`) = Ym(`)−GmY1(`), m 6= 1 (15)

where Gm is the mth element of g.

5. EVALUATION

5.1. Test setup

Noisy reverberant recordings are taken from the evaluation dataset
of the ACE challenge [11]. Longform recordings, denoted ‘s4’, for
the cruciform array (M = 5) in ambient noise with a signal-to-
noise ratio of 18 dB are each segmented into 4 non-overlapping 8 s

No processing Baseline Proposed

Train 1 80.5 92.5 90.5
Train 2 43.3 73.3 80.3
Train 3 40.0 70.0 79.0

Table 2. Percentage of correctly classified samples by training con-
dition and reverberation enhancement method.

sections. The resulting dataset contains 5 rooms × 2 positions (i.e.
source-microphone configurations)× 10 speakers (5 male, 5 female)
× 4 utterances = 400 utterances. The fullband RT of the five rooms
are listed in Table 1 and lie between 0.37 and 1.25 s.

For each utterance, three alternative approaches to reverberation
enhancement are considered. With ‘No processing’ applied, decay
rates are estimated in each STFT band of all N =M channels. The
‘Baseline’ approach applies the decorrelation method from [23] and
the ‘Proposed’ approach, is as described in Sec. 4. The baseline and
proposed approaches both result in N =M − 1 enhanced signals.

For each reverberation enhancement approach the N channels
are used to obtain a subband NSV feature vector, as described in
Sec. 3.1. Considering 1/3-octave bands centered between 200 Hz and
4 kHz gives a total of J = 14 features.

Room identification was performed using the classifier de-
scribed in Sec. 3.2. Performance is expected to depend on how well
matched the training and testing conditions are. Since the aim is to
identify the specific room, of course it is necessary to include record-
ings from the test room in the training set. Using a cross-validation
approach, every utterance in the dataset is classified by first retrain-
ing the classifier’s models using an appropriate subset of the data,
which, minimally, does not include the tested utterance. We define
three training conditions with increasing disparity between the train-
ing and testing conditions in terms of those utterances which are
excluded from the training set. ‘Train 1’: No utterances from the
same speaker at the same position, ‘Train 2’: No utterances from
any speaker at the same position, and ‘Train 3’: No utterances from
any speaker at the same position and no utterances from the same
speaker at any position in any room. In this way, ‘Train 3’ is the
most demanding case since the tested speaker and the tested position
are completely unseen.

5.2. Results and discussion

Classification results are presented in Table 2. In the easiest case,
‘Train 1’, where the training data includes utterances from the same
position as the test data, excellent results are obtained as could be
expected with both baseline and the proposed enhancement methods
(92.5% and 90.5%) correct, respectively, while classification based
on the unenhanced signals is substantially worse (80.5% correct).
The nature of the misclassifications can be seen in Fig. 1(a-c). In
all but one case, Lecture Room 2 is correctly identified. From the
fullband RT, this is clearly the most distinct room. The most fre-
quently confused rooms are Meeting Room 1 and Office 2 which
have very similar fullband RTs of 0.44 s and 0.48 s, respectively. It
is remarkable that such similar rooms can be separated at all.

Performance in ‘Train 2’ and ‘Train 3’ conditions is somewhat
degraded for all enhancement methods, reflecting the more chal-
lenging classification task. However, the proposed method is least
affected, with a correct identification rate 37–39 percentage points
higher than the unprocessed case and 7–9 percentage points higher
than baseline method. This suggests that the distributions of NSV
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Fig. 1. Confusion matrix for classification using (a,b,c) ‘Train 1’, (d,e,f) ‘Train 2’ and (g,h,i) ‘Train 3’ training conditions with (a,d,g) no
processing, (b,e,h) baseline enhancement [23] and (c,f,i) proposed enhancement of microphone signals.

features in each room are more separable when the proposed rever-
beration enhancement is used. Comparing the confusion matrices
in Fig. 1(e) and (f) for ‘Train 2’ and Fig. 1(h) and (i) for ‘Train
3’, the specific rooms which are confused are the same but the pro-
posed method is better able to discriminate between Lecture Room 1,
Meeting Room 1 and Office 2, which are the rooms with mid-range
fullband RTs.

6. CONCLUSIONS

A method for identifying the room in which a multichannel speech
recording was made based on subband NSV features has been pro-
posed. A novel method for reverberation enhancement based on
estimating the relative early transfer function during speech onsets
was also proposed. In the most demanding condition, it was found
that the accuracy of room identification was better when using the

proposed enhancement (79% correct) than with either a baseline en-
hancement method (70% correct) or no enhancement (40% correct).
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