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ABSTRACT

In this paper, source localization and dereverberation are for-
mulated jointly as an inverse problem. The inverse problem
consists in the interpolation of the sound field measured by a
set of microphones by matching the recorded sound pressure
with that of a particular acoustic model. This model is based
on a collection of equivalent sources creating either spherical
or plane waves. In order to achieve meaningful results, spa-
tial, spatio-temporal and spatio-spectral sparsity can be pro-
moted in the signals originating from the equivalent sources.
The inverse problem consists of a large-scale optimization
problem that is solved using a first order matrix-free optimiza-
tion algorithm. It is shown that once the equivalent source
signals capable of effectively interpolating the sound field are
obtained, they can be readily used to localize a speech sound
source in terms of Direction of Arrival (DOA) and to perform
dereverberation in a highly reverberant environment.

Index Terms— Dereverberation, Source localization,
Sparse sensing, Inverse problems, Large-scale optimization

1. INTRODUCTION

While there are many source localization methods that work
well in free-field acoustic scenarios, source localization in
highly reverberant environments is challenging [1, 2]. Re-
verberant environments are also problematic for speech intel-
ligibility and significant research efforts have been focusing
on dereverberation [3]. Dereverberation and source localiza-
tion are often connected: for example many dereverberation

This research work was carried out at the ESAT Laboratory of KU
Leuven, the frame of the FP7-PEOPLE Marie Curie Initial Training Net-
work “Dereverberation and Reverberation of Audio, Music, and Speech
(DREAMS)”, funded by the European Commission under Grant Agreement
no. 316969, KU Leuven Research Council CoE PFV/10/002 (OPTEC), the
Interuniversity Attraction Poles Programme initiated by the Belgian Science
Policy Office IUAP P7/19 “Dynamical systems control and optimization”
(DYSCO) 2012-2017, KU Leuven Impulsfonds IMP/14/037 and KU Leuven
C2-16-00449 “Distributed Digital Signal Processing for Ad-hoc Wireless Lo-
cal Area Audio Networking”. The scientific responsibility is assumed by its
authors.

methods require the knowledge of the Direction of Arrival
(DOA) of the sound source [4, 5]. Instead, other methods
rely either on channel equalization which requires estima-
tion of the Room Impulse Responses (RIRs) [6] or on Multi-
Channel Linear Prediction (MCLP) which requires no a pri-
ori knowledge of the acoustics but is non-robust to additive
noise [7, 8]. These methods are either data-driven or make
use of parametric acoustic models. Recently source local-
ization has been posed as an inverse problem where physical
acoustic models are used to reconstruct and localize the sound
source [9–11]. Such methods allow precise localization of the
source position inside the room but require detailed knowl-
edge of the room geometry and boundary conditions. Alter-
natively, the Plane Wave Decomposition Model (PWDM) has
been shown to approximate well any sound field in source-
free volumes [12]. This allows sound sources to be localized
without knowledge of the room geometry but requires a large
number of microphone measurements scattered in a large vol-
ume [13, 14].

In this paper, a recently proposed RIR interpolation
method [15], is reformulated and modified to be able to
perform joint source localization and dereverberation. The
aim of this paper is not to demonstrate that this method is
competitive with other state-of-the art methods but rather to
present a novel approach which is substantially different from
the traditional localization and dereverberation methods. The
proposed method relies on the interpolation of the sound field
recorded by a set of microphones which is formulated as a
regularized inverse problem. This consists of an optimization
problem that matches the sound pressure measured by mi-
crophones with the sound pressure predicted by an acoustic
model. Here two acoustic models are compared: the PWDM
and the Time-domain Equivalent Source Model (TESM)
which both are capable of approximating the sound field in
a source-free volume [15]. In both methods the modeling is
based on a collection of equivalent sources producing either
spherical (TESM) or plane waves (PWDM) controlled by sig-
nals that are estimated through the optimization problem. It is
shown that, by imposing a specific sparsity-inducing regular-
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ization with a specific model, three kinds of sparse priors can
be imposed in these signals: spatial sparsity, spatio-temporal
sparsity and spatio-spectral sparsity. A novel procedure for
tuning the level of regularization is presented that requires an
additional reference microphone. The resulting optimization
problem is of large scale and has a non-smooth cost function:
this is solved using a matrix-free accelerated version of the
Proximal Gradient (PG) algorithm [16] and combined with
a Weighted Overlap-Add (WOLA) strategy. Once the inter-
polation step is achieved, the equivalent source signals can
be used to estimate the DOA of the sound source. Addition-
ally, a dereverberated audio signal can be readily obtained
by selecting the equivalent source signal corresponding to
the estimated DOA. Simulation results show that in a sound
field generated by a speech source, spatio-spectral and spatial
sparsity have similar performances and outperform spatio-
temporal sparsity both in terms of sound field interpolation
and dereverberation.

2. ACOUSTIC MODELS

2.1. Time-domain equivalent source method

The time-domain Green’s function for a point-like source in
free-field is defined as:

φl,m(t) = 1/(4πdl,m)δ (t− dl,m/c) , (1)

where c is the speed of sound, δ is the Dirac delta function
and dl,m = ‖xl − xm‖2 is the distance between the m-th mi-
crophone position xm and the l-th equivalent source position
xl. Equation (1) represents a particular solution of the free-
field wave equation with null initial conditions and describes a
spherical wave. Equation (1) can be discretized over time at a
sampling frequency Fs using a fractional delay filter with Im-
pulse Response (IR) hl,m [17]. The TESM can be described
by the following equation:

p(x, n)|x=xm ≈
Nw−1∑
l=0

1

4πdl,m
hl,m(n) ∗ wl(n), (2)

for xm ∈ Ω, where ∗ represents convolution, p(x, n)|x=xm
is

the sound pressure at xm at a discrete time n and Ω ⊂ R3 is a
source-free volume where any sound field can be well approx-
imated using a collection of equivalent sources [15] controlled
by the signals wl(n) referred to here as weight signals. Equa-
tion (2) can be generalized for Nm discrete positions xm ∈ Ω
and Nt discrete times: P = Dt(W), where P ∈ RNt×Nm is
a matrix in which the m-th column is the sound pressure sig-
nal p(x, n)|x=xm

for n = 1, ..., Nt, and W ∈ RNt×Nw is a
matrix in which the l-th column is the weight signal wl(n).
The linear operator Dt : RNt×Nw → RNt×Nm maps the
weight signals to the sound pressures and represents a dic-
tionary of spherical waves.

2.2. Plane wave decomposition method

A plane wave is defined as

φ̂l,m(f) = e−ikfdl,m (3)

and is the homogeneous solution of the Helmholtz equation,
i.e. the frequency domain counterpart of the free-field wave
equation. Here f is the frequency index and kf is the wave
number defined as kf = ωf/c. A sound field in a source-free
volume Ω can be as well represented by a finite weighted sum
of plane waves coming from Nw different directions [12]:

p̂(x, f)|x=xm
≈
Nw−1∑
l=0

φ̂l,m(f)ŵl(f) for xm ∈ Ω, (4)

where the weight ŵl(f) is a complex scalar that weights the
l-th plane wave at the frequency index f . Equation (4) de-
scribes the PWDM: this equation can be generalized as well
for Nm discrete positions xm ∈ Ω and Nf discrete frequen-
cies P̂ = Dp(Ŵ) where P̂ ∈ CNf×Nm is a matrix in which
the m-th column is the Discrete Fourier Transform (DFT) of
the sound pressure signal p(x, n)|x=xm and Ŵ ∈ CNf×Nw

is a matrix containing the weights ŵl(f).

3. THE INVERSE PROBLEM

Consider a sound source in the far field and a set of of Nm
microphones positioned inside a source-free volume Ω ∈ R3.
The aim is to interpolate the sound field inside this volume
in order to jointly localize and dereverberate a sound source.
What is sought by the inverse problem is to extrapolate out
of the microphone measurements the optimal weight signals
that lead to the optimal sound field approximation in the least-
squares sense. The following optimization problem can be
used to solve this inverse problem:

W? = argmin
W

f(W) =
1

2
‖D(W)− P̃‖2F , (5)

where ‖ · ‖F is the Frobenius norm ‖A‖F = ‖vec(A)‖2,
with vec(·) representing vectorization and D(·) the acoustic
model of choice, i.e. either Dt(·) or Dp(·). The columns
of the matrix P̃ contain the microphone measurements, i.e.
either the Nt-long measured sound pressure signals or their
DFT. Problem (5) is heavily ill-posed: if many sound waves
are used to constructD(·), multiple solutions for W can min-
imize the cost function effectively. This will in general lead to
over-fitting: the measured sound pressure will coincide with
the sound pressure of the acoustic model but only at the mi-
crophone positions, leading to a poor sound field interpola-
tion. To avoid this, it is necessary to regularize problem (5)
by adding a regularization term to its cost function:

W? = argmin
W

f(W) + g(W). (6)
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Fig. 1. Visualization of the normalized energy of the weight
signals, i.e. ‖w?

l ‖22, as a function of the azimuthal angle ϕ.
The red dots represent the true source position. (a) TESM
with l1-norm regularization, (b) TESM with sum of l2-norms
regularization, (c) PWDM with l1-norm regularization.

A possible choice is the sum of l2-norms regularization cor-
responding to g(W) = λ

∑Nw−1
l=0 ‖W:,l‖2 where W:,l in-

dicates the lth column of W and λ is a scalar that balances
the level of regularization. This regularization promotes only
few columns of W to have non-zero coefficients, in prac-
tice encouraging spatial sparsity. Another very common
regularization is the l1-norm regularization corresponding to
g(W) = λ‖vec(W)‖1 which promotes sparsity in W, that
is only few elements of the matrix are non-zero. If a time
domain acoustic model (TESM) is used, spatio-temporal
sparsity is promoted while with a frequency domain acous-
tic model (PWDM), spatio-spectral sparsity is promoted.
The equivalent sources are positioned in a Fibonacci lat-
tice, providing a nearly uniform sampling of the surface of a
sphere [18]. In order to achieve accurate interpolation, a large
number of equivalent sources must be used: here Nw = 500.
Once a solution is obtained, the DOA of the sound source can
be inferred by finding the weight signal with the strongest
energy. Fig. 1 shows the energy of the weight signals as a
function of the azimuthal angle for the simulation results pre-
sented in Section 5. A clear maximum is visible towards the
direction of the sound source shown by the red dot. Finally, a
dereverberated audio signal can be obtained by selecting the
weight signal corresponding to the estimated DOA.

4. OPTIMIZATION ALGORITHM

Problem (6) is non-smooth and can easily become of large-
scale. A well known algorithm that can deal with this type
of problems is the PG algorithm which is a first order op-
timization algorithm suitable for non-smooth cost functions
and having minimal memory requirements [19]. The PG al-
gorithm generalizes the gradient descent algorithm to a class
of non-smooth cost functions and solves optimization prob-
lems such as the problem in (6) where f(·) is convex and
smooth, and g(·) is non-smooth, such as for instance the reg-
ularization terms described in Section 3. The PG algorithm
consists of iterating

Wk+1 = proxγg
(
Wk − γ∇f(Wk)

)
, (7)

starting from an initial guess W0. Here∇f(·) is the Jacobian
operator of f(·), γ is the step-size, and proxγg(·) is the proxi-
mal mapping of the function g(·) [19]. For the regularization
terms described in Section 3 the proximal mapping consists
of a cheap operation [19], e.g. the l1-norm regularization re-
duces to a soft-thresholding of the elements of W. The Jaco-
bian can be computed using the adjoint operator of D(·) [15].
Both D(·) and its adjoint can be evaluated without the usage
of matrices, which for this problem can become unfeasible to
store, leading to matrix-free optimization. Finally, an acceler-
ated variant of the PG algorithm is used: this algorithm uses
a quasi-Newton method to accelerate the PG algorithm sub-
stantially [16]. An implementation of the algorithm is also
available online [20].

4.1. Weighted Overlap-add

Solving the optimization problem in (6) using microphone
signals with a duration of the order of seconds is not feasi-
ble since evaluating the linear operator D(·) and its adjoint
becomes too costly. For example choosing Nw = 500 equiv-
alent sources andNt = 16000 (2 s with a sampling frequency
Fs = 8 kHz) would result in having 8 · 106 optimization vari-
ables. To overcome this issue, the optimization problem is
split into several smaller sub-problems. A WOLA procedure
is used: the microphone signals are split into frames of Nt̄
samples. Here, Nt̄ = 512, resulting in a sub-problem having
256 · 103 optimization variables when Nw = 500. A square-
rooted Hanning window is used with an overlap of 50%. If
a frequency domain model is used, an additional DFT is ap-
plied to the sound pressure frames and the solution is con-
verted back to the time domain before and after solving the
optimization sub-problem respectively.

4.2. Tuning of parameter λ

The parameter λ appearing in the regularization terms g(·)
controls the level of regularization. In order to obtain mean-
ingful results it is essential to tune λ properly. The following
strategy is used: an additional microphone, positioned at the
center of the microphone array is used to validate the qual-
ity of the interpolation. For each frame, the optimization
sub-problem is solved multiple times using different values
of λ. Initially, a low level of regularization is used: λ0 is
chosen to be 10−6λmax, where λmax is the value for which
W? = 0 [15]. Once a solution is obtained, the Normal-
ized Mean Squared Error (NMSE) of the interpolation error
εin = ‖pv,λz

− p̃v‖22/‖p̃v‖22 is computed, namely the dis-
tance between the reference microphone signal p̃v of the cur-
rent frame and pv,λz , the reference microphone sound pres-
sure predicted by the acoustic model at the z-th iteration. For
small values of λ the prediction error is expected to be large
due to over-fitting. The optimization sub-problem is then
solved once more by increasing λz logarithmically: this is
warm-started using the previous solution. The procedure is

6894



−15

−20
(a)

ε̃ i
n

TESM l1-norm TESM Σ l2-norms
PWDM l1-norm PWDM Σ l2-norms

5

10

15

(b)

∆
α

4 8 12 16 20 24
0.6

0.65

0.7
(c)

Number of MicrophonesNm

ST
O

I

Fig. 2. Mean of the NMSE interpolation error in dB (a), an-
gular distance in degrees (b) and STOI scores (reverberant
microphone score is 0.5) (c) for different types of acoustic
models and regularizations as a function of the number of mi-
crophones (excluding the reference microphone).

2

4

(a)

2

4

(b)

Fr
eq

ue
nc

y
(k

H
z)

0 1 2 3 4 5

2

4

(c)

Time (s)
Fig. 3. Spectrogram of reverberant microphone signal (a),
dereverberated signal obtained through PWDM with l1-norm
regularization (b), and through TESM with sum of l2-norms
regularization (c), using Nm = 12 microphones.

stopped once the prediction error stops decreasing, εin,z >
εin,z−1 + 10−4, namely when the regularization ceases to be
beneficial in terms of interpolation error. Finally the solution
with optimal lambda, λz−1 is added to W?.

5. SIMULATION RESULTS

In this Section, results of simulations using the proposed
method are presented. A reverberant shoebox room with
dimensions [Lx, Ly, Lz] = [7.34, 8.09, 2.87] m and reverber-
ation time of T60 = 1 s is modeled using the Randomized
Image Method (RIM) [21]. The sound source is placed in the
front left corner of the room ( xs = [Lx/8, Lx/8, 1.6] m),
and a sampling frequency of Fs = 8 kHz is used. An
anechoic audio sample of 5.3 s of male speech from [22]
is convolved with the RIRs to simulate the microphone sig-
nals. White noise is added with a SNR of 40 dB to simulate
sensor noise. The microphones are positioned in a spher-
ical microphone array with a radius of 10 cm, centered at
xc = [4.4, 5.7, 1.4]. The equivalent sources are also
centered at xc with a radius of 2.9 m.

Fig. 2(a) shows the mean of the interpolation error ob-
tained at each frame. Almost identical performances are
achieved between the PWDM with either sum of l2-norms or
l1-norm. Slightly better results are obtained using the TESM
with sum of l2-norms. The worse results are obtained using
the TESM with l1-norm. This method, which was shown to
have good performance for the task of RIR interpolation [15],
has poorer performance in this context because the sound
field is not generated by a temporally sparse source. All
methods achieve reasonable localization even when only 4
microphones are used with spatial sparsity outperforming
the other regularizations as it can be seen in Fig. 2(b). Here
the minimum angular error is 4.5, which is due to the fi-
nite number of equivalent sources, and, as a consequence, of
directions. Fig. 3 compares the spectrogram of the weight sig-
nals corresponding to the estimated DOAs with a microphone
recording: in the latter the speech components are smeared
out by the reverberation while in the former these are clearly
more visible. Fig. 2(c) shows speech intelligibility scores
obtained using the STOI measure [23]: these are in line with
the results of Fig. 2(a). Informal listening tests indicate that
the spatio-temporal sparsity audio samples have many more
artifacts than the ones obtained with spatial sparsity or spatio-
spectral, with the latter having less audible distortions and
that the dereverberation effect increases as more microphone
are used. Audio samples can be found in [24].

6. CONCLUSIONS

This paper proposes a novel method for joint source localiza-
tion and dereverberation. This is achieved by interpolating the
sound field using the measurements of a set of microphones
and by solving an inverse problem that relies on a particu-
lar acoustic model. The inverse problem is solved using an
accelerated version of the PG algorithm using matrix-free op-
timization and a WOLA strategy in order to obtain the weight
signals that control the sound waves which effectively are able
to interpolate the sound field. Here, two acoustic models are
compared: the TESM and the PWDM. The inverse problem
is regularized using sparsity promoting regularization and de-
pending on the choice of the acoustic model, spatial, spatio-
temporal and spatio-spectral sparsity can be promoted in the
weight signals. The level of regularization is tuned by com-
paring the interpolated sound field with the one recorded by
an additional microphone. It is shown that, by finding the
weight signal with strongest energy, the sound source can be
localized in terms of DOA. The same weight signal can then
also be used for a dereverberation task. Simulations shows
that DOA estimation can be achieved using relatively few mi-
crophones (Nm ≥ 4) when a speech source generates the
sound field and that spatial and spatio-spectral sparsity out-
perform spatio-temporal sparsity in terms of both interpola-
tion quality and dereverberation.

6895



7. REFERENCES

[1] M. Brandstein and D. Ward, Microphone arrays: sig-
nal processing techniques and applications. Springer,
2001.

[2] S. Argentieri, P. Danes, and P. Souères, “A survey on
sound source localization in robotics: From binaural to
array processing methods,” Computer Speech & Lan-
guage, vol. 34, no. 1, pp. 87–112, 2015.

[3] P. A. Naylor and N. D. Gaubitch, Speech dereverbera-
tion. Springer, 2010.

[4] E. A. P. Habets and S. Gannot, “Dual-microphone
speech dereverberation using a reference signal,” in
Proc. 2007 IEEE Int. Conf. Acoust., Speech, Signal Pro-
cess. (ICASSP ’07), 2007, pp. 901–904.

[5] A. Schwarz and W. Kellermann, “Coherent-to-diffuse
power ratio estimation for dereverberation,” IEEE/ACM
Trans. Audio Speech Lang. Process., vol. 23, no. 6, pp.
1006–1018, 2015.

[6] I. Kodrasi, S. Goetze, and S. Doclo, “Regularization
for partial multichannel equalization for speech dere-
verberation,” IEEE Trans. Audio Speech Lang. Process.,
vol. 21, no. 9, pp. 1879–1890, 2013.

[7] T. Nakatani, B.-H. Juang, T. Yoshioka, K. Kinoshita,
M. Delcroix, and M. Miyoshi, “Speech dereverberation
based on maximum-likelihood estimation with time-
varying gaussian source model,” IEEE Trans. Audio
Speech Lang. Process., vol. 16, no. 8, pp. 1512–1527,
2008.
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