
JOINT ESTIMATION OF THE ROOM GEOMETRY AND MODES WITH COMPRESSED
SENSING
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ABSTRACT

Acoustical behavior of a room for a given position of micro-
phone and sound source is usually described using the room
impulse response. If we rely on the standard uniform sam-
pling, the estimation of room impulse response for arbitrary
positions in the room requires a large number of measure-
ments. In order to lower the required sampling rate, some
solutions have emerged that exploit the sparse representation
of the room wavefield in the terms of plane waves in the low-
frequency domain. The plane wave representation has a sim-
ple form in rectangular rooms. In our solution, we observe
the basic axial modes of the wave vector grid for extraction
of the room geometry and then we propagate the knowledge
to higher order modes out of the low-pass version of the mea-
surements. Estimation of the approximate structure of the k-
space should lead to the reduction in the terms of number of
required measurements and in the increase of the speed of the
reconstruction without great losses of quality.

Index Terms— compressed sensing, k-space, plane
waves, room modes, room transfer function

1. INTRODUCTION

In 2006 Ajdler et al. [1] have defined the Plenacoustic func-
tion (PAF) as the function that contains the room impulse re-
sponses (RIRs) for all the possible pairs of microphone and
source positions in a room with the given acoustical proper-
ties. Without having any prior knowledge involved, it is ex-
tremely hard to estimate the PAF. As shown by Moiola et al.
[2] the acoustical behavior of the room can be described by a
discrete sum of plane waves that can exist inside a given room
which are tightly related to the resonant frequencies. This
plane wave approximation holds for any star-convex room
and is independent of boundary conditions, domain of prop-
agation, type of the source or proximity to the source or the
walls [3].
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Sparse plane wave approximation in the low frequency
domain introduces an assumption required for sparse analysis
of room’s complex wavefield which further opens the door
to compressed sensing [4, 5]. Mignot et al. [3] have started
the trend of the sparse modal analysis. They have designed
a greedy approach which uses space decomposition based on
iterative alternating projections for the estimation of the wave
number and wave vectors that fully determine the acoustical
behaviour of the given room. Due to the high dimensional-
ity of data acquired by microphones, greedy methods such as
Simultaneous Orthogonal Matching Pursuit (SOMP) [6] (si-
multaneous, since we are fitting measurements from multiple
microphones at once) have shown better performance than the
relaxation of the minimization of `0 norm [7].

Our solution focuses on the structured sparsity of the
plane wave representation for the reconstruction of param-
eters of the Room Transfer Function (RTF). In literature,
sparse plane wave representation has been used not only for
the representation of the wavefield in a room in low frequency
domain, but also for efficient storage of highly correlated
recordings of dense microphone arrays [8]. Besides sparse
plane wave representation an interesting sparse approach to
the estimation of RTF is a recent approach with orthonormal
basis functions based on infinite impulse response filters (IIR)
[9]. Though not exploring plane wave sparsity, the solution
relying on the weighted spatio-temporal representation [10]
also gives promising room impulse response interpolations.

On the other hand, the solutions for estimating the shape
of the room usually rely on knowing the location of early re-
flections [11], [12], but finding the true reflections within an
echogram is not a trivial problem and is still an open research
question.

2. PROBLEM SETUP

When sampling sound we need to take into account two types
of possible aliasings: temporal and spatial. Depending on
the highest frequency that we want to capture fc, we define
our temporal sampling step ∆t in such a way that the sam-
pling frequency satisfies fs = 1

∆t > 2fc [13]. Once the
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(a) Plane waves inside a rectangular room.

(b) Wave vectors in the search space.

Fig. 1. Plane wave types and corresponding structured spar-
sity of wave vectors. In theory these vectors form a paral-
lelepiped inscribed into a sphere with radius ωn

c , resulting
in structured sparsity. From left to right: x-axial mode, xy-
tangential mode and oblique mode.

temporal sampling step is fixed, we determine the appropri-
ate sampling step in space either by the limits imposed by the
Courant–Friedrichs–Lewy condition [14] for finite difference
time domain (FDTD) schemes, or by a contemporary view of
the problem observed through the sampling of the PAF [1].

The support of the spectrum of the PAF p̂(ω, ϕx, ϕy, ϕz),
where ω = 2π

∆t is the temporal angular sampling frequency
[rad.s−1] and ϕi = 2π

∆i is the spatial angular frequency
[rad.m−1] over each of the ith observed axis, lays inside a
hypercone: ϕ2

x + ϕ2
y + ϕ2

z ≤ ω2

c2 , where c is the celerity of
sound. This gives the following condition for the sampling
step over each of the axes: ∆i < πc

ωc
, ∀i ∈ {x, y, z}. The

following question emerges: can we acquire the targeted in-
formation at lower sampling rates, both in time and in space,
by exploiting the underlying structure of the data without
introducing significant losses?

2.1. Plane wave representation of wavefield

Acoustic propagation is governed by the wave equation:

∆p(t,X)− 1

c2
∂2

∂2t
p(t,X) = 0. (1)

Solution of the wave equation can be approximated in the low
frequency domain as a discrete sum of damped complex har-
monics [2]:

p(t,X) =
∑
q∈I

Aqφq(X)gq(t), (2)

Fig. 2. The left hand side shows the periodicity of the wave
vector grid with respect to k = [±kx,±ky,±kz] with period
over the axes equal to: π

Lx
, π
Ly

and π
Lz

. Here we see an exam-
ple of an oblique wave vector. The right hand side shows the
search space on our uniformly sampled sphere.

where I ⊂ Z, φq represents the spatial dependency of mode
shape whose shape is illustrated in [15] and gq is correspond-
ing time evolution of the mode. Temporal functions are or-
thogonal. This expression emphasizes the separability of the
analysis and the estimation of the temporal and spatial param-
eters, which can greatly reduce the computational complexity
of the parameter analysis [3].

Temporal functions take the form of gq(t) = ejkqct,
where kq =

ωq−jξq
c is the wave number of the qth room

mode. ωq is the resonant frequency and ξq < 0 is the corre-
sponding damping factor. On the other hand, in the spatial
functions, the room modes can be decomposed as a sum of
plane waves: φq(X) ≈

∑R
r=1 aq,re

jkq,r·X, where kq,r is the
rth wave vector of the qth mode and R = 8 for a rectangu-
lar room case. In Figure 1. we see an example of all types
of plane waves in a rectangular room: axial, tangential and
oblique determined by the wave vectors. In the case of a
room with low damping, the length of the wavevectors can be
approximated by the real part of the corresponding wavenum-
ber: ‖kq,r‖ = |kq|, since in that case kq ≈ ωq

c . This gives
us an intuition for the spherical vector search which will be
explained more in detail later. For a rectangular room the
wave vectors are on the vertices of a parallelepiped inscribed
into the sphere. Through modal decomposition (3) and plane
waves approximation, the final form of the RIR is composed
of the modal wave numbers kq’s, the corresponding wave
vectors kq,r’s and their expansion coefficients αq’s:

p(t,X) =
∑
q,r

αqe
j(kqct+kq,r·X). (3)

As in the theory of modal decomposition [16, 2], we will
focus on the coupling of the pressure field with the standing
waves at room’s resonant frequencies.
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2.2. Periodicity of the wave vector grid

In our solution we will be focusing only on the rectangular
rooms with the regular wave vector grid (regular eigenvalue
lattices in the wave vector space) [16] as shown in Figure 2.
The k-space is an array of numbers representing spatial fre-
quencies. According to theory, as long as we know the peri-
odicity of the grid over each of the axes, it will provide us the
knowledge on the room geometry as well as the values of the
wave vectors of higher order. So the goal of our approach is
the estimation of these three periods along each of the axes.
Under the assumptions that the room is lightly damped, the
3 fundamental axial modes can be used as a basis to find all
higher order modes. This will reduce the cutoff frequency of
the analyzed data, which further reduces the density of the re-
quired grid of microphones, due to the dependencies between
the temporal and spatial sampling as shown earlier.

3. PARAMETER ESTIMATION WITH PARTIAL
COMPRESSED SENSING FOR STRUCTURED DATA

In 1985, Richardson et al. [17] have proposed a curve fitting
algorithm allowing the reconstruction of the RTF curve from
discrete measurements using room mode shaped functions as
basic fitting elements. For different positions of the micro-
phones/sound sources across the room, some parameters stay
the same - common parameters: eigenfrequencies which de-
pend on the room geometry, and the room mode damping
which depends on the damping of the walls. The attenua-
tion and the phase of the room modes are position dependent
parameters - specific parameters which are expressed by dif-
ferent expansion coefficients and different spatial coordinates.

3.1. Acoustical properties of rectangular rooms

There are two key points for our parameter estimation pro-
cedure: how many room modes N do we expect up to
a given cutoff frequency fc and what are their approxi-
mate resonant frequencies ωn? These are dependent on
the room shape and size [16]. For a rectangular room of
size Lx × Ly × Lz angular eigenfrequencies are given

by the expression: ωn = πc
√(

nx

Lx

)2
+
(ny

Ly

)2
+
(
nz

Lz

)2
where (nx, ny, nz) ∈ N3

0 \ (0, 0, 0) and approximate num-
ber of modes up to the cutoff frequency fc is given by:
Ñfc ≈ 4π

3 V
(
fc
c

)3
where V = LxLyLz .

Of special interest will be the basic axial resonant fre-
quencies: ω[1,0,0] = πc

Lx
, ω[0,1,0] = πc

Ly
and ω[0,0,1] = πc

Lz
, be-

cause they will provide the data about the shape of the room.

3.2. Reconstruction procedure

Our goal is to reconstruct spatial periods of the wave vector
grid from low-pass room impulse responses over each of the
axes. The size of the room is assumed to be unknown and is

Algorithm 1 ReSEMblE algorithm (Algorithm for the joint
estimation of Room SizEs and ModEs)

Input: A set of measurements {m(x, y, z, t)}Mi=1 at M
known locations X = [x, y, z]T in space and T points in
time. R ∈ CT×M are measurements in matrix form and
r ∈ CTM are measurements in a vectorized form. fp is
frequency that separates data into 2 analysis procedures.

Output: Estimated room size L̃x, L̃y, L̃z and
estimated room transfer function parameters:

• expansion coefficients {α}N,Vn=1,v=1,

• resonant frequencies {ω}Nn=1 and damping {ξ}Nn=1

• wave vectors {k}N,Vn=1,v=1

N : number of modes,
V : number of wave vectors per wave number.

procedure RESEMBLE(R, X)
Separate the measurements with fp: R = Rl + Rh.
for il ∈ {1, ..., Nl} do

step 1: estimate (ωil , ξil) from Rl
il

step 2: estimate kil from rlil
step 3: compute new residual Rl

il+1

end for

Recover the room size L̃x, L̃y, L̃z from basic axial
room modes and form the regular wave vector grid.

for ih ∈ {Nl + 1, ..., N} do
step 1: get ωih and kih from the wave vector grid
step 2: estimate ξih from Rh

ih

step 3: compute new residual Rh
ih+1

end for
Estimate the expansion coefficients {α}N,Vn=1,v=1 using

least square approach.
end procedure

jointly estimated. All measured signals are separated into two
components: low-pass Rl and high-pass Rh. Analysis pro-
cedure is first applied to the low-pass component, which in-
cludes the estimation of the wave numbers and correspond-
ing wave vectors. The bandwidth of this low-pass analysis is
chosen in such a way that it covers reasonable sizes of rooms
and removes the false modes that can appear below the first
mode in RTF. With f ∈ [20, 70]Hz we cover room dimen-
sions Lx, Ly, Lz ∈ [2.45, 8.575]m for c = 343 m

s . This can
easily be adjusted for rooms of unusual sizes.

3.2.1. Estimation of ωil , ξil and ξih

In the low part we define a unit-norm temporal dictionary with
atoms of form: Θ[:, i] = θ[i]

‖θ[i]‖ , where θ[i] = eξn[i]tejωn[i]t

and i is an index on a 2D grid of possible (ωn, ξn), ωn ∈
[0, πfs] and ξn ∈ [10ξ0, 0.1ξ0], ξ0 = −3 ln 10

RT60
. The atoms
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with the highest correlation contains the solution pair. In the
high part the frequency is known, so we have only a 1D grid
of possible values for the damping, which leads to a much
simplified search.

3.2.2. Estimation of kil

The estimation of wave vectors is done with a structured
group sparsity assumption - after estimating the wave num-
ber, we construct a sphere with a radius ωn

c which follows
from the assumption of lightly damped modes. We define
a non-unit-norm spatio-temporal dictionary with atoms of
form: Σ[:, i] = eξil tejωil

teX·k[i], where k are samples on this
uniformly sampled sphere [18].

On the surface of this sphere we search for a group of 8
wave vectors [±kx,±ky,±kz]T which form a parallelepiped
and which are aligned with the residual the most. In a case of
tangential modes, the parallelepiped collapses over 1 dimen-
sion and shrinks to 4 wave vectors (e.g. [±kx,±ky, 0]T ), and
axial modes are defined by 2 wave vectors (e.g. [±kx, 0, 0]T ).

In each iteration the best subgroup of 8 atoms has been es-
timated by applying a simultaneous version of matching pur-
suit (MP) [19] and the new residual is estimated by an orthog-
onal projection onto the space spanned by the union of all of
the subgroups that were previously selected.

4. RESULTS FOR RECONSTRUCTING THE
K-SPACE OF A RECTANGULAR ROOM

In our solution we have relied on two types of structured spar-
sity expected in theory [16]: wave vector sparsity as nodes of
parallelepiped and wave vector periodicity in the wave vec-
tor grid. How does this structured approach affect the data
retrieval? As shown in [3, 10] efficient interpolation of the
sound field is expected only within the part of the room sur-
rounded by microphones used for training of the parameters.

We will present the performance of our approach on mea-
surements made in a rectangular room with an approximate
size 3m × 5.6m × 3.53m. Properties of the chosen room are
observed in [20]. Microphones are distributed randomly in-
side a 1m side cube in one half of the room and the sound
source is in the other half of the room. Since we were pro-
cessing real measurements, in order to have an idea about the
approximate value of some of the parameters we want to esti-
mate, we have applied the rational fraction polynomial curve
fitting [17] based on the room mode shaped polynomials as
basic fitting elements. This way we have retrieved approxi-
mate resonant frequencies and mode damping factors. Dur-
ing the curve fitting process, our wave numbers kn = ωn+jξn

c
appear in the poles of the fitted function [21]: pω(X) =

ρc2ωq
∑
n

φn(X)φn(X0)
Kn[2ξnωn+j(ω2−ω2

n)] .
Figure 3. shows the results for the estimation of the room

mode resonant frequencies and their position in the k -space
in the low part of the algorithm with 20 microphones. Here

Fig. 3. The estimation of wave vectors in k-space. The
numbers next to the points indicate the corresponding eigen-
frequencies (Hz). What we expect from theory in a case with
perfectly rigid walls is plotted against the values we get from
the measurements.

the fp frequency was set to be 70Hz. The basic axial modes
are easily recognized and they give a fine approximation of
the room size up to a few cm away from ground truth. We can
notice that the kx and ky component of the estimated wave
vectors give a good approximation, but there is a slight devi-
ation in the kz direction. This is attributed to the fact that in
the room where the measurements were performed the floor
is made from wood and ceiling is made of concrete. Also
the slight deviation of the eigenfrequencies can be attributed
to the fact that the search of the wave vectors was performed
with a rigid wall model ‖kq,r‖ = |kq|.

After applying the high part of the algorithm, the Pearson
correlation coefficient showed that the approximation is good
(e.g. 82% for only 19-microphone setting and fc = 200Hz),
but it should be further improved once the nature of the devi-
ation of the wave vectors is efficiently characterized.

5. CONCLUSION

The proposed solution is suitable only for rectangular shaped
rooms that are lightly damped, which was confirmed by the
experiments. Also, the sound source has to be put in a posi-
tion such that it excites all the axial modes. Although that the
solution requires the N , RT60 and c parameters to be know,
solution is not sensitive to their slight perturbation. The esti-
mation of approximate structure of the k-space has lead to the
reduction in the terms of number of required measurements
and in the increase of the speed of the reconstruction without
great losses of quality, but not for a broad range of frequen-
cies. The higher we take the frequencies, the greater become
the deviations. In the spirit of reproducible research, we have
decided to open our data and code.
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