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ABSTRACT
Room reconstruction from sound is the problem of estimat-
ing indoor space boundaries given only a set of sound events
acquired by an array of microphones. In order to find a
solution in realistic scenarios, it is necessary a robust and
practical method that can solve the echo labelling problem,
i.e. assigning at each signal delay the correct reflector that
has generated it. Although being an NP-hard problem, in
this paper we demonstrate that it is possible to solve the
echo labelling problem in a reasonable computational time
without the need of additional hypotheses on the echoes
order of arrival.

Index Terms— Echo Labelling problem, NP-hard, Room
Reconstruction, Structure from Sound.

I. INTRODUCTION
Whenever a sound is emitted in an enclosed space, the

signal received at the microphones is a sum of a set of
attenuated time-delayed replicas given by the room walls
reflections. The problem at the basis of room reconstruction
can be briefly stated as the estimation of the position and
orientation of planar room reflectors only from the time-
delays in the arrival of the emitted signal at a set of
microphones. Such time-delays, once extracted from the
signal [1], [2], [3], [4], [5], [6], have to be associated to
the correct “source” of the delay: The first being related to
the direct path of the sound wave, the other related to the
reflections by the walls.

However, the identity of the wall that has generated the
delay is unknown at the receivers so leading to a NP-
hard assignment problem, called the Echo Labelling Problem
(ELP). This task is aggravated by the presence of missing
time delays, noise in the temporal localisation of the delays
and spurious delays extracted from the signal, due for
example to scattering from objects and non-rigid surfaces
[7]. To this end, a robust solution to ELP is essential to obtain
correct results in any room reconstruction method. ELP has
been studied extensively in the literature but few approaches
[8], [9], [10] are able to provide results in realistic scenarios
as tested in this work.

In practice, planar surface positions can be estimated by
an exhaustive search over a discretized grid in the space of

all possible configurations, evaluating a proper cost function
parametrized by microphone and source positions and signal
peaks. In this way, the intrinsic ambiguity problem arising
from the unknown matching between signal peaks and planar
surfaces in ELP is bypassed. However, as the 3D space
of configurations is of dimension three multiplied by the
number of planar surfaces, a naive exhaustive search would
be computationally hard.

For this reason we adopt a greedy iterative procedure, the
core of our approach, in which the search is decoupled for
each planar surface, decreasing the space of solution to 3 for
each wall search. To do this, we initially did not consider
second order reflections since they imply dependencies be-
tween different planar surfaces. Moreover, at each iteration,
we prune out peaks matched to an already estimated planar
surface to simplify the search over subsequent surfaces.
Finally we adopt a robust cost function that allows to cope
with missing peaks or spurious peaks due to not perfect
functioning of the peak finder stage. Through this procedure
it is possible to make feasible the solution of this problem
in realistic environments which are currently impractical for
most approaches in the literature.

II. RELATED WORKS
Several works have attempted to solve ELP but most of

them related to synthetic scenarios only. In [9] the signals
at the microphones are modelled as a sparse combination
of signals related to every possible plane. The method
requires to measure or simulate such dictionary of signals,
a time consuming procedure. The ELP boils down by the
requirement of microphone array compactness but this limits
the method applicability. In some works [11], [12], [13],
[10], [14], [15], [16], [17] reflectors are modelled as planes
tangent to the ellipsoids with foci given by each pair of
microphone/source.

Antonacci et al. [11] use a clustering procedure of Times
Of Flights (TOFs) based on the Hough transform to solve
ELP. However, this method requires a very specific setup
with just one microphone and a source moving on a perfect
circle around the microphone. In [10], the source is moved
very close to a reflector at each acquisition, such that the
second TOF is surely related to the same reflector for

6877978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



all the microphones. In [12] a brute force search is run
over all the possible TOF combinations. Once a reflector is
estimated, the corresponding TOFs are iteratively discarded:
The approach becomes feasible given the low number of
microphones/sources and by the fact that just first order
TOFs are assumed to be detected. In [17] the use of a
compact microphone array strongly limits the possible per-
mutations in echoes order of arrival. In [8] a rank criterion is
applied to a matrix derived from pairwise distances between
microphones and between microphones and virtual sources,
in order to check if the current set of selected TOFs belong
to a single reflector. The method results in a combinatorial
search, unless heuristics on microphone array compactness
are applied. Moreover the method is sensitive to outliers.

Other works [18], [19] do not deal efficiently with ELP,
requiring an exhaustive combinatorial search. In a previous
work of the authors [20], a stochastic approach, based on
Simulated Annealing was able to bypass ELP by associating
at each iteration the TOF computed from the tentative
reflector configuration to the TOF from the signals using
a nearest neighbour procedure. Even if a pruning stage was
devised to discard ambiguous TOFs, the method did not have
a specific strategy to deal with outliers and missing data.

III. ELP BY GREEDY ITERATIVE APPROACH

Consider N sources and M microphones, with positions
given by the 3-vectors bn, n = 1, . . . , N and sm with
m = 1, . . . ,M , enclosed in a room defined by a convex
polyhedron with a known number of faces K. The 3D
positions of these K planar surfaces are defined by the 3-
vectors rk, k = 1, . . . ,K, normal to the surfaces and with
modulus equal to their distance from the 3D coordinate
center. According to the image model [21] the reflection
from a planar surface k can by approximated by a virtual
source emitting the same signal as the real source n, whose
position pn

k is specular with respect to the plane rk as:

pn
k = IM(bn, rk) = bn + 2

(
1− r>k b

n

‖rk‖22

)
rk. (1)

The signal reflected from a surface can be reflected by
other surfaces, yielding second order reflections At most
K(K − 1) second order virtual sources can be identified.
Their location pn

k1k2
for k1, k2 = 1, . . . ,K and k1 6= k2 is

given by pn
k1k2

= IM(pn
k1
, rk2

). Higher order reflections
are here considered as noise, together with scattering from
objects in the room and self noise of the acquisition chain.
The TOFs between real or virtual sources and microphones
can be expressed as:

τnm0 = ‖bn − sm‖2/c. (2)

τnmk = ‖pn
k − sm‖2/c, τnmk1k2

= ‖pn
k1k2
− sm‖2/c. (3)

with c being the sound velocity.

From the set of NM acquired signals we have that the
times of arrival (TOA), given by the sum of TOF plus emis-
sion times, can be estimated by a peak finding procedure, as
described in [22]. From the TOA corresponding to direct
path, i.e. the first peaks in time, an iterative method by
Gaubitch et al. [23], based on bilinear decomposition, can
be adopted to estimate the positions of microphones and real
sources b̃

n
, s̃m as well as the emission times. Hence, the

estimated TOFs can be recovered for both real and virtual
sources, by subtracting emission times to TOAs. The TOFs
for each microphone n and each source m can be defined
as T n

m0 =
{
τ̃nm1, τ̃

n
m2, . . . , τ̃

n
mL(n,m)

}
of length L(n,m).

Notice that L(n,m) does not match exactly the number of
first and second order virtual sources since the peak finding
algorithm could detected spurious peaks or even miss true
peaks.

A straightforward method to find the correct reflector
position is to build a cost function given by the sum of the
absolute differences of each TOF, function of the position
reflector through Eq. (1), (2), (3) and each TOF estimated
from the signal. In the following we will call these two
TOFs as the GTOF (geometry TOF) and STOF (signal
TOF). Unfortunately, there are three important issues: 1) The
nonlinear nature of Eq. (1) leading to possible local minima;
2) the presence of spurious peaks or missing peaks in the
estimated TOF from signal; 3) ELP, i.e. the unknown asso-
ciation between TOFs from signals and related reflectors.

A brute force approach to bypass the above three issues
would be to discretize the space of reflector positions and
perform a systematic search, checking if the resulting GTOFs
correctly match the STOFs. In this case the problems of
labeling, missing data and spurious peaks is solved simply
by considering, for each GTOF, the nearest STOF, and
applying opportune robust cost functions to limit the effect
of missing and spurious peaks. Moreover, the problem of
local minima is implicitly solved by exhaustive grid search
over all the possible solutions. Unfortunately, this procedure
is computationally infeasible due to dimensionality of the
search space equal to 3K.

However, if we initially consider in the model only the
first order reflections, treating higher order ones in the
data as noise, we can decouple the search for each single
reflector, decreasing in this way the dimensionality of the
search space to 3. Then, once the first reflector position is
estimated, the image sources associated to it can be exploited
to infer the subsequent reflectors positions. This results in a
greedy iterative algorithm, where at each iteration a new
reflector position is estimated and second order reflections
are incrementally added to the data.

In detail, we discretize the 3D euclidean space of possible
locations of the planar surfaces in a 3D cartesian grid
rgridi = (xi, yi, zi) with i = 1, . . . , I . The grid boundaries
are set according to a coarse guess of the dimension of the
room and the grid spacing is given by the required precision
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and the computational resources available. Now, rename for
convenience the estimated real source positions b̃

n
with p̃n

0 .
Moreover, consider the index j = 1, . . . ,K as the iteration
index of the algorithm and k = 0, . . . , j − 1 as the index
of image sources (and real ones for k = 0) that will be be
progressively added along with the iterations. Consider the
first iteration for which j = 1 and k = 0. For a given
real source n, a microphone m and a tentative reflector
position rgridi , the time of flight τgeom,n

mk (i) computed from
the geometry of the problem is given by:

τgeom,n
mk (i) = ‖s̃m − IM(p̃n

k , r
grid
i )‖2/c. (4)

For such TOF, we search for the index l̃ of the closest TOF
estimated from the signal, with a nearest neighbours (NN)
approach:

l̃(n,m, k, i) = NN(T n
mj , τ

geom,n
mk (i)). (5)

Now, we need a score function to evaluate the good-
ness of the fitting between the two delays τgeom,n

mk (i) and
τ̃n
m,l̃(n,m,k,i)

. Such score should be rapidly decaying when-
ever the two delays are too distant, since in this case the
guessed reflector position is probably wrong. At the same
time the score should be robust to missing TOFs: if the
peak finder fails to detect a peak from the signal, the nearest
neighbour procedure identifies a matching within arbitrarily
distant TOFs. An empirically suitable score function Sn

mk(i)
is the following:

Sn
mk(i) = exp

(
−
(
τgeom,n
mk − τ̃n

m,l̃(n,m,k,i)

)2
/(2σ2)

)
+ ε.

(6)
where σ rules the rate of decay of the score function and
should be set according to the accuracy of the peak finder
error; ε imposes a lower bound on the score function, making
it robust to missing TOFs. The total score function Stot(i) is
given, empirically, by the product of all the score functions
related to the couples of microphones and real sources as:

Stot(i) =

N∏
n=1

M∏
m=1

j−1∏
k=0

Sn
mk(i). (7)

Recall that at first iteration j = 1 and k = 0 the last product
structure is not relevant. Finally we search by a brute force
approach for the reflector position yielding the maximum
score:

ĩ = argmin
i
Stot(i), r̃j = rgrid

ĩ
(8)

with j = 1. In this way we have found the first estimated
reflector position r̃1. In order to perform the search of the
second reflector, starting iteration j = 2, we remove from
the set of STOFs all the STOFs that are likely related to
the first reflector, otherwise the search procedure would fall
again in the same global maximum already found for the
first reflector. To do this we subtract to each set of STOFs

T n
m,j the set of STOFs already matched with the GTOFs

calculated from the first reflector T matched,n
m , as follows:

T n
m,j+1 = T n

m,j \ T matched,n
m , (9)

where T matched,n
m is defined as the set of STOFs for which

at least a GTOF is distant less than a predefined threshold
thr1:

T matched,n
m =

{
τ̃nml |

(
∃k | |τgeom,n

m,k (̃i)− τ̃nml| < thr
)}
(10)

The threshold thr is necessary to avoid the undesired
removal of STOFs τ̃nml too distant from the corresponding
GTOFs, likely due to missing data. Finally, once the first
reflector r̃1 has been estimated, we can consider the corre-
sponding n image sources p̃n

1 for the search of the second
reflector. This means to consider the second order reflections
between the already estimated reflector and the next one.
Thus, for each of the pair n,m, one match will be sought
for the real source p̃n

0 and one for the virtual source p̃n
1 .

Notice that all the previous formulas are still valid by simply
increasing the iteration index j from 1 to 2. By repeating
the procedure, the second reflector is estimated and the new
image sources are added, making the estimation more and
more robust. Actually, the decrease in STOFs quality with
the iterations2 is compensated by the increased amount of
TOFs available. Finally, the set of estimated planar reflectors
is used as a starting guess for an off-the-grid refined solution,
by solving a nonlinear Least Squares problem3, minimizing
the sum of squared differences of geometry TOF and signal
TOF, function of microphones, sources and walls positions4.

IV. REAL EXPERIMENTS
Real experiments were performed in a rectangular room

with a vaulted ceiling of size 8.5m ×7.5m ×7m, located in a
16th century mansion in Genova (Fig.1(a)). We displaced 12
omnidirectional Lavalier microphones in an area of about 3m
×3m at the center of the room, with heights ranging from
from 20cm to 2m. Then we used a speaker of about 3cm
diameter (VEHO360), moved in 17 different locations and
the transmitted signal was a chirp of length 5s and frequency
sweep from 3 kHz to 6 kHz. An average SNR of 10 dB was
measured, due mainly to traffic in the street nearby.

In order to acquire precise ground truth of room bound-
aries, we employed a Leica C10 laser scanner. Notice that the
vaulted ceiling and the niches corresponding to the windows
present relevant differences from the assumed piecewise
planar model (Fig.2). Moreover a VICON system provided

1Notice that more than one STOFs could be included in T matched,n
m

due to spurious peaks
2The reflectors characterized by less missing TOFs are estimated at the

first iterations and their sTOFs are removed from the sTOFs set.
3For details please refer to [22].
4Notice that ELP has been already solved and this allows to discard

spurious signal TOF, and geometry TOF for which the corresponding signal
TOF are missing.
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(a) (b)
Fig. 1. (a) View of the room for experimental tests; (b)
ground truth data: 3D displacement of microphones (stars)
and sources (crosses) from VICON system, and planar
surfaces (fitted from point cloud given by the laser scanner).

(a) (b) (c) (d)
Fig. 2. Four views of subsampled 3D point cloud from laser
scanner and fitted ground truth planes related to the four
walls, ceiling and floor. (a): assonometric view of the room;
(b), (c) and (d): top and two lateral views.

the ground truth for microphone and sound events positions.
Ground truth data5, enclosing microphones and sources 3D
positions and planes fitted to the 3D subsampled point cloud
are displayed in Fig.1(b). Microphones, real sources and
emission times were estimated by the method of [23] and
used as input to the proposed method. We set parameters σ,
ε and thr to 1.47 ·10−4 s, 0.1 s and 5.88 ·10−4 respectively.
The grid step was set to 0.2 m. These values were selected
according to physical considerations, such as the transmitted
wavelengths, and trade off between computational load and
desired accuracy. We compared our method with two recent
approaches for room geometry estimation [8], [19]. Differ-
ently from our method, both algorithms use the information
of just one source. In addition, their combinatorial nature
does not allow to exploit 12 microphones in reasonable
computation times. To allow a comparison as fair as possible,
we run both the algorithms 17 times, one for each source.
For each of the run, we selected the subset of five [19]6 or six
[8] microphones that gave the best match between estimated
and ground truth delays. Obviously, in a real situation ground
truth delays are not known, however our aim was to test the
two competing algorithms at their best. Finally, we collected
all the estimated planes from the 17 trials and clustered them
in six groups representing the reflectors. We then pruned
out all the reflectors that were too distant from ground truth
planes given by the dataset. Notice that also this step would

5Dataset with ground truth can be freely downloaded at: vgm.iit.it/
datasets/3d-room-reconstruction-with-sound

6[19] is actually formulated to work with 5 microphones only.

DE Our DE [19] DE [8]
wall1 22 mm 150 mm 100 mm
wall2 34 mm 100 mm 60 mm
wall3 62 mm - 143 mm
wall4 4 mm 70 mm 80 mm
floor 1 mm 30 mm 20 mm

ceiling 1824 mm - -
AE Our AE [19] AE [8]

wall1 0.89 deg 1.92 deg 1.60 deg
wall2 1.72 deg 1.91 deg 2.13 deg
wall3 0.63 deg - 4.32 deg
wall4 0.43 deg 0.76 deg 1.23 deg
floor 1.40 deg 1.18 deg 1.01 deg

ceiling 2.98 deg - -

Table I. Distance error (DE) and Angle error (AE) between
ground truth and estimated planes according to the proposed
method (Our), the method of [19] and the method of [8].

Our [19] [8]
300 seconds 120 seconds 5 hours

12 microphones 5 microphones 6 microphones
O(NML) > O(NL(M−1)) > O(NLM )

Table II. First row: computation time for the real experi-
ment. Second row: actual number of microphones employed.
Third row: computational complexity, where N , M , and L
are respectively the number of sources, microphones and the
average number of extracted peaks per acquisition.

require a preliminary knowledge of the room. As it can be
seen from Table I both methods are not able to estimate
the ceiling, while the method of [19] misses also the third
wall. Moreover the accuracy of estimation is on average
significantly worse with respect to our method In particular,
the average distance error is 24.6 mm for our method,
87.5 mm for [19] and 80.6 mm for [8], while the average
angle error is 1.01 degrees for our method, 1.41 degrees for
[19] and 2.13 degrees for [8]. Overall, our method shows
remarkable accuracy for floor and the four walls and a qual-
itatively correct estimation of the ceiling. The considerable
departure of the vaulted ceiling from the planar reflector
model accounts for the difference in estimation accuracy.
Table II reports the actual computation time, the number
of microphones adopted and the computational complexity
of the walls estimation procedure with respect to number
of sources, microphones and average number of detected
peaks per acquisition. In terms of computational complexity,
the proposed method grows linearly with the number of
microphones, sources and average estimated peaks, due in
particular to nearest neighbour search in Eq.5.

V. CONCLUSION
We presented a robust room geometry estimation method

able to efficiently solve ELP, thus allowing to increase
the number of microphones and sources involved used in
thi problem and consequently improving the accuracy of
reconstruction, while keeping reasonable computation times.
Experiments on a real environment witness the advantages
of the method with respect to recent state-of-art.
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