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ABSTRACT

Our work is based on a recently introduced mathematical the-
ory of deep convolutional neural networks (DCNNs). It was
shown that DCNNs are stable with respect to deformations of
bandlimited input functions. In the present paper, we gener-
alize this result: We prove deformation stability on Sobolev
spaces. Further, we show a weak form of deformation sta-
bility for the whole input space L2(Rd). The basic compo-
nents of DCNNs are semi-discrete frames. For practical ap-
plications, a concrete choice is necessary. Therefore, we con-
clude our work by suggesting a construction method for semi-
discrete frames based on bounded uniform partitions of unity
(BUPUs) and give a specific example that uses B-splines.

Index Terms— Deep convolutional neural networks, de-
formation stability, Sobolev space, bounded uniform partition
of unity, admissible semi-discrete frame

1. INTRODUCTION

One approach to object recognition [1] is the following two-
stage process [2]. The first stage consists of a convolutional
neural network [3] which extracts features from the input [4].
In a second step, these features are fed into a support vector
machine (SVM) for classification [5]. Here, we are interested
in the feature extraction via convolutional neural networks.

Inspired by [6], the authors of [7] developed a mathemat-
ical theory of deep convolutional neural networks (DCNNs)
upon which our work is based. Two important properties of
DCNNs were investigated in [7]: translation invariance and
deformation stability. For an intuitive explanation of these no-
tions, let f : R→ C be a L2(R) function which is the input to
the DCNN. The idea of translation invariance is that features
extracted from f and its translated version f(·−c) with a con-
stant c <∞ should be very similar or even identical (see also,
e.g., [8]). Deformation stability, on the other hand, assumes
that for a slowly changing differentiable map τ : R→ R, the
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original f and the deformed version f(· − τ(·)) yield simi-
lar features. In addition, the similarity should increase if the
amount of deformation, measured by supt∈R |τ(t)|, goes to
zero. We define the notion of deformation stability more for-
mally in Section 2.

Deformation stability of DCNNs has been investigated
in [9] for cartoon functions and in [7] for bandlimited func-
tions in L2(Rd). In the present paper, we generalize the de-
formation stability result to functions in the Sobolev space
H2(Rd) (cf. Definition 4 below). This space contains all
bandlimited functions and is dense in the input space L2(Rd)
of the DCNNs. We exploit this density to prove a weak form
of deformation stability for the whole space L2(Rd).

The elements of the DCNNs in the theory of [7] form a
so-called admissible semi-discrete frame (cf. Definition 1 be-
low). The concrete choice for this frame has consequences in
practical implementations. For example, as discussed in [10],
the energy decay with increasing network depth is influenced
by the frame. We discuss how bounded uniform partitions
of unity (BUPUs), which are important quantities in Wiener
amalgam spaces (cf. [11, 12]), provide a tool to construct
admissible semi-discrete frames with desired properties and
give an explicit example.

1.1. Notation and definitions

Given some x ∈ C, we denote the complex conjugate as
x. The Euclidean inner product for x, y ∈ Cd then is
〈x, y〉 :=

∑d
i=1 xiyi with corresponding norm ‖x‖E :=√

〈x, x〉. For a differentiable map τ : Rd → Rd, Dτ
is its Jacobian matrix. The norms corresponding to these
quantities are ‖τ‖∞ := supx∈Rd ‖τ(x)‖E and ‖Dτ‖∞ :=
supx∈Rd |(Dτ)(x)|∞. The supremum norm of a matrix M is
defined as |M |∞ := supi,j |Mi,j |.

As usual, Lp(Rd), p ∈ [1,∞), denotes the space of
all Lebesgue-measurable functions f : Rd → C such that
‖f‖p := (

∫
Rd |f(x)|p dx)1/p < ∞. In the case p = ∞, we

have ‖f‖∞ := supx∈Rd |f(x)|. If f : Rd → Cm is a vector
field, the L2-norm is given by ‖f‖2 := (

∫
Rd ‖f(x)‖2E dx)1/2.

For f ∈ L1(Rd) ∩ L2(Rd), the Fourier transform is
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f̂(ω) :=
∫
Rd f(x)e−2πi〈x,ω〉 dx and can be extended via

Plancherel’s theorem to L2(Rd). The convolution of f ∈
L1(Rd) and g ∈ L2(Rd) is (f?g)(y) :=

∫
Rd f(x)g(y−x) dx.

We define the Paley-Wiener space of bandlimited func-
tions as PW2

σ(Rd) := {f ∈ L2(Rd) | supp(f̂) ⊆ Uσ(0)}
where Uσ(0) is the ball of radius σ about 0 ∈ Rd.

2. THE NETWORK ARCHITECTURE

In what follows, we describe the architecture of DCNNs as it
was developed in [7]. We do not make use of pooling (which
might be considered as pooling by sub-sampling with pooling
factor 1) and use the modulus non-linearity. Thereafter, via
the stability result of [7] for bandlimited functions, we explain
the notion of deformation stability.

An important component of DCNNs are admissible semi-
discrete frames.

Definition 1 (Admissible semi-discrete frame). A set {hout}∪
{hλ}λ∈Λ of functions, where hout, hλ ∈ L1(Rd) ∩ L2(Rd),
with a countable index set Λ is called admissible semi-
discrete frame if for all f ∈ L2(Rd), there exist constants
0 < A ≤ B ≤ 1 such that

A‖f‖22 ≤ ‖f ? hout‖22 +
∑
λ∈Λ

‖f ? hλ‖22 ≤ B‖f‖22. (1)

Remark 2. According to [7, Proposition 2], the frame con-
dition (1) is equivalent to the Littlewood-Paley condition

A ≤ |ĥout(ω)|2 +
∑
λ∈Λ

|ĥλ(ω)|2 ≤ B, a.e. ω ∈ Rd.

In every network layer, a DCNN repeats the process of
computing convolutions and applying the modulus to the re-
sult. Figure 1 visualizes the idea. In the first layer, an input
f ∈ L2(Rd) is convolved with every element hλ, λ ∈ Λ, of
an admissible semi-discrete frame and then the modulus is ap-
plied. In layer m, every element of the convolution+modulus
of the previous layer m− 1 goes through the same process: a
convolution with every element hλ is computed and the mod-
ulus is applied. There are infinitely many layers.

An ordered sequence p = (λ1, . . . , λm) of indices λi ∈ Λ
is called a path of length |p| = m. Let us define a correspond-
ing operator

U[p]f := | . . . ||f ? hλ1
| ? hλ2

| · · · ? hλm
|

which describes repeating convolution+modulusm times. We
set U[∅]f = f . Then, a feature of the scattering network is:
S[p]f := U[p]f ? hout. Let Λm denote the set of paths of
length m and P = ∪∞m=0Λm the set of all paths. Then, the
extracted feature vector is S[P]f := {S[p]f}p∈P .

For a given set of pathsQ ⊆ P , we introduce the operator

E2(U[Q]f) :=

√∑
p∈Q
‖U[p]f‖22

|||f ? hλ2 | ? hλ2 | ? hλ2 |

||f ? hλ1
| ? hλ1

| ||f ? hλ3
| ? hλ3

|

|f ? hλ3 ||f ? hλ1 | |f ? hλ2 |

f

...
...

...

· · ·

· · ·

Fig. 1: DCNN architecture with input f and elements hλi ,
λi ∈ Λ, of an admissible semi-discrete frame.

which might be interpreted as collecting the “energy” of all
signals corresponding to the paths in Q. From [7, Eq. (24)],
we know that for admissible semi-discrete frames, the feature
extraction is Lipschitz:

E2(S[P]g − S[P]f) ≤ ‖g − f‖2, ∀f, g ∈ L2(Rd). (2)

This property was crucial for the derivation of deformation
stability in [7]. We recite this result in Theorem 3 below.

Let us first define a deformation operator Tτf := f(· −
τ(·)) for a differentiable map τ : Rd → Rd. By construction,
Tτ is a linear operator. It is possible to show (see, e.g., [6])
that

‖Tτf‖2 ≤
√

2d‖f‖2 (3)

and, hence, Tτf ∈ L2(Rd) holds if ‖Dτ‖∞ ≤ 1/2. Now,
deformation stability is to be understood in the sense of (4):

Theorem 3 (Theorem 2 of [7]). There exists a constant C >
0 such that for all f ∈ PW2

σ(Rd) and all τ : Rd → Rd with
‖Dτ‖∞ ≤ 1

2d , it holds:

E2(S[P]Tτf − S[P]f) ≤ Cσ‖τ‖∞‖f‖2. (4)

For ‖τ‖∞ → 0, the right-hand side of (4) goes to 0. This
means that the feature vectors S[P]Tτf and S[P]f are similar
for “small” deformations and they are identical in the limit. In
other words, small deformations do not have a large influence
on the extracted feature vector of the DCNN.

3. DEFORMATION STABILITY

This section shows that the feature extraction is deformation
stable on the Sobolev space H2(Rd). We follow [13] in the
definition of H2(Rd).

Definition 4 (Sobolev space H2(Rd)). Let Di := ∂
∂xi

denote
a differential operator and let α = (α1, . . . , αd) be a d-tupel
of non-negative integers αi ≥ 0. We say α has degree |α| :=∑d
i=1 αi and set

Dα := Dα1
1 . . . Dαd

d

with D(0,...,0)f = f for every f ∈ L2(Rd).
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Now, we define the Sobolev norm

‖f‖H2 :=

√ ∑
0≤|α|≤2

‖Dαf‖22

for all f ∈ L2(Rd) for which the expression makes sense. The
Sobolev space then is given by

H2(Rd) := {f ∈ L2(Rd) | ‖f‖H2 <∞}.

The fact that the gradient∇f of f ∈ H2(Rd) exists helps
us to prove deformation stability:

Theorem 5 (Deformation stability on H2(Rd)). Let {hout}∪
{hλ}λ∈Λ be an admissible semi-discrete frame. Then, for f ∈
H2(Rd) and deformations τ : Rd → Rd with ‖Dτ‖∞ ≤ 1/2,
it holds

E2(S[P]Tτf − S[P]f) ≤
√

2d‖τ‖∞‖∇f‖2. (5)

Proof. For f ∈ H2(Rd), define the auxiliary function

k(s, t) := f(t− sτ(t)). (6)

The fundamental theorem of calculus yields

f(t− τ(t)) = k(1, t) = k(0, t) +

∫ 1

0

∂

∂ξ
k(ξ, t)

∣∣∣∣
ξ=s

ds

= f(t)−
∫ 1

0

〈∇f(t− sτ(t)), τ(t)〉ds.

This implies

‖Tτf − f‖22 =

∫
Rd

∣∣∣ ∫ 1

0

〈∇f(t− sτ(t)), τ(t)〉ds
∣∣∣2 dt

≤
∫
Rd

(∫ 1

0

|〈∇f(t− sτ(t)), τ(t)〉|ds
)2

dt

(a)

≤
∫
Rd

∫ 1

0

|〈∇f(t− sτ(t)), τ(t)〉|2 dsdt

(b)

≤
∫ 1

0

∫
Rd

(
‖∇f(t− sτ(t))‖E‖τ(t)‖E

)2

dtds

(c)

≤ ‖τ‖2∞
∫ 1

0

∫
Rd

‖∇f(t− sτ(t))‖2E dtds

= ‖τ‖2∞
∫ 1

0

‖Tsτ∇f‖22 ds. (7)

Inequality (a) is a consequence of the Cauchy-Schwarz
inequality. After applying Fubini, using Cauchy-Schwarz
again, |〈∇f(t− sτ(t)), τ(t)〉| ≤ ‖∇f(t− sτ(t))‖E‖τ(t)‖E,
yields (b). Further, by definition ‖τ(t)‖E ≤ ‖τ‖∞ holds
which justifies (c). Exploiting inequality (3) results in

‖Tτf − f‖22 ≤ ‖τ‖2∞
∫ 1

0

2d‖∇f‖22 ds = 2d‖τ‖2∞‖∇f‖22.

(8)

Inserting (8) in (2) with g = Tτf results in the statement of
the theorem.

4. WEAK DEFORMATION STABILITY

The Sobolev space H2(Rd) is dense in L2(Rd). This fact
together with Theorem 5 allows us to prove a weak form of
deformation stability for the whole input space L2(Rd):

Theorem 6 (Weak deformation stability). Let {hout} ∪
{hλ}λ∈Λ be an admissible semi-discrete frame. Then, for
all f ∈ L2(Rd) and all ε > 0, it holds

∃δ > 0 : ∀τ : ‖τ‖∞ < δ : E2(S[P]Tτf − S[P]f) < ε (9)

where τ is an admissible deformation, i.e., a differentiable
mapping τ : Rd → Rd with ‖Dτ‖∞ ≤ 1/2.

For small enough ‖τ‖∞, i.e., for small enough deformations,
E2(S[P]Tτf −S[P]f) can be made arbitrarily small. We call
this weak deformation stability.

Proof of Theorem 6. Let f ∈ L2(Rd) and ε > 0 be arbitrary.
Because H2(Rd) is dense in L2(Rd), for any ε̃ < 1√

2d+2
ε,

there exists a gε̃ ∈ H2(Rd) with ‖gε̃ − f‖2 ≤ ε̃. Applying
the triangle inequality yields:

‖Tτf − f‖2 = ‖Tτf − Tτgε̃ + Tτgε̃ − gε̃ + gε̃ − f‖2
≤ ‖Tτf − Tτgε̃‖2 + ‖Tτgε̃ − gε̃‖2 + ε̃

(3)
≤
√

2dε̃+ ‖Tτgε̃ − gε̃‖2 + ε̃.

Combining this with Theorem 5 shows

‖Tτf − f‖2 ≤ (
√

2d + 1)ε̃+
√

2d‖τ‖∞‖∇gε̃‖2

where ‖∇gε̃‖2 is finite. For ‖τ‖∞ < δ with δ = ε̃√
2d‖∇gε̃‖2

and using (2) with g = Tτf , we get

E2(S[P]Tτf − S[P]f) ≤ ‖Tτf − f‖2 ≤ (
√

2d + 2)ε̃ < ε
(10)

which yields the statement of the theorem.

5. SEMI-DISCRETE FRAMES FROM BOUNDED
UNIFORM PARTITIONS OF UNITY

DCNNs and, therefore, also the considerations in the previ-
ous sections are based on admissible semi-discrete frames.
The concrete choice of a semi-discrete frame influences the
performance of the feature extractor in practical applications.
For example, [10] discusses how the choice affects the energy
decay over different network layers, which gives an idea of
how many layers are needed in an implementation. It is thus
of interest to be able to construct admissible frames with cer-
tain properties. We show that BUPUs provide a means to do
so.

Definition 7 (BUPU, [12]). A set of functions {ϕ̂j}j∈I on R
with ϕ̂j ∈ L1(R) ∩ L2(R) is a bounded uniform partition of
unity (BUPU) if
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1.
∑
j∈I ϕ̂j ≡ 1,

2. supj ‖ϕ̂j‖∞ <∞,

3. there exist a compact setU ⊂ R with nonempty interior
and points yj ∈ R such that supp(ϕ̂j) ⊂ U +yj for all
j ∈ I , and

4. for each compact K ⊂ R, we have

sup
x∈R
|{j ∈ I | x ∈ K + yj}| <∞.

Note that it is possible to extend the theory of BUPUs to
Rd with d ≥ 1 (see, e.g., [14, 15]). For simplicity, we focus
on d = 1. The following lemma connects BUPUs to semi-
discrete frames.

Lemma 8. Let {ϕ̂j}j∈I be a BUPU. Then, there exist con-
stants 0 < A ≤ B <∞ such that

A‖f‖22 ≤
∑
j∈I
‖f ? ϕj‖22 ≤ B‖f‖22, ∀f ∈ L2(R).

Proof. Combining [12, Proposition 5.2] and [12, Theo-
rem 6.7] for L2(R) reveals the norm equivalence ‖f̂‖22 �∑
j∈I ‖f̂ ϕ̂j‖22. That is, there exist constants 0 < A ≤ B <

∞ such that for any f̂ ∈ L2(R), it holds

A‖f̂‖22 ≤
∑
j∈I
‖f̂ ϕ̂j‖22 ≤ B‖f̂‖22.

Applying the convolution theorem, i.e., 2π‖f ? g‖22 = ‖f̂ ĝ‖22
for f ∈ L2(R) and g ∈ L1(R), completes the proof.

Remark 9. In order for a semi-discrete frame to be admissi-
ble, the upper frame bound needs to fulfill B ≤ 1 (cf. Defi-
nition 1). According to [7, Proposition 3 in Appendix A], this
can easily be achieved by rescaling all frame elements.

5.1. Semi-discrete frames from B-splines

We use B-splines to give an explicit example of an admissi-
ble semi-discrete frame that is constructed via a BUPU. Our
discussion of B-splines is due to [16]. Define the box function

ϕ̂(0)(ω) :=


1, − 1

2 < ω < 1
2 ,

1
2 , |ω| =

1
2 ,

0, ω /∈ [− 1
2 ,

1
2 ],

with support in [− 1
2 ,

1
2 ], and observe the identity∑

k∈Z
ϕ̂(0)(ω − k) = 1, ∀ω ∈ R. (11)

A B-spline of degree n ≥ 1 then is defined to be

ϕ̂(n) := ϕ̂(0) ? ϕ̂(0) ? · · · ? ϕ̂(0)︸ ︷︷ ︸
(n+1) times

. (12)

−9 −6 −3 0 3 6 9
0

0.2

0.4

0.6

0.8

ω

sum of squared B-splines
squared B-splines

Fig. 2: The sum
∑7
k=−7(ϕ̂(3)(ω − k))2 and the summands

(ϕ̂(3)(ω − k))2 for k ∈ {−5, . . . ,−1}.

A n times convolution of (11) with ϕ̂(0) yields∑
k∈Z

ϕ̂(n)(ω − k) = 1, ∀ω ∈ R

because 1 ? ϕ̂(0) = 1. Clearly, any ϕ̂(n)(· − k) is bounded
and the set {ϕ̂(n)(· − k)}k∈Z is a partition of unity. Further,
all ϕ̂(n)(· − k) have compact support with equal length.

There exists a closed form expression of the convolution
in (12) whose inverse Fourier transform is given by

ϕ(n)(t) =

(
sin(t/2)

t/2

)n+1

.

Straightforward computations yield ϕ(n) ∈ L∞(R) and
ϕ(n) ∈ L1(R) for n ≥ 1. Hence, also ϕ(n) ∈ Lp(R) is true
for all 1 ≤ p ≤ ∞.

In summary, {ϕ̂(n)(· − k)}k∈Z is a BUPU and, due to
Lemma 8, {ϕ(n)(· − k)}k∈Z is an admissible semi-discrete
frame. As an example, Figure 2 illustrates that B-splines
with n = 3 fulfill the Littlewood-Paley condition from Re-
mark 2 with B ≤ 1. Finally, we note that other choices than
B-splines are possible. For instance, [17] constructs BUPUs
with a smooth window from a hyperbolic tangent.

6. RELATION TO PRIOR WORK

In 2012, Mallat analyzed a particular DCNN which consists
of so-called scattering wavelets [6]. This was a first step to-
wards a mathematical theory of DCNNs. It was then gener-
alized in [7] and deformation stability of the general DCNNs
for bandlimited functions has been proved. Our work extends
the deformation stability to the Sobolev space H2(Rd) and,
in a weak form, to the whole space L2(Rd).
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