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ABSTRACT

We introduce a new framework for learning dense corre-
spondence between deformable geometric domains such as
polygonal meshes and point clouds. Existing learning based
approaches model correspondence as a labelling problem,
where each point of a query domain receives a label identi-
fying a point on some reference domain; the correspondence
is then constructed a posteriori by composing the label pre-
dictions of two input geometries. We propose a paradigm
shift and design a structured prediction model in the space
of functional maps, linear operators that provide a compact
representation of the correspondence. We model the learning
process via a deep residual network which takes dense de-
scriptor fields as input, and outputs a soft map between the
two given objects. The resulting correspondence is shown
to be accurate on several challenging shape correspondence
benchmarks.

Index Terms— Spectral geometry, deep learning, func-
tional maps, structured prediction

1. INTRODUCTION

3D acquisition technology has made great progress in the last
decade, and is being rapidly incorporated into commercial
products ranging from Microsoft Kinect [1] for gaming, to LI-
DARs used in autonomous cars. An essential building block
for application design in many of these domains is to recover
3D shape correspondences in a fast and reliable way. While
handling real-world scanning artifacts is a challenge by itself,
additional complications arise from non-rigid motions of the
objects of interest (typically humans or animals). Most non-
rigid shape correspondence methods employ local descriptors
that are designed to achieve robustness to noise and deforma-
tions; however, relying on such “handcrafted” descriptors can
often lead to inaccurate solutions in practical settings. Par-
tial remedy to this was brought by the recent line of works
on learning shape correspondence [2, 3, 4, 5, 6, 7, 8]. A key
drawback of these methods lies in their emphasis on learn-
ing a descriptor that would help in identifying corresponding
points, or on learning a labelling with respect to some refer-
ence domain. On the one hand, by focusing on the descrip-
tor, the learning process remains agnostic to the way the final
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Fig. 1. Correspondence results obtained by our network
model on two pairs of real scans. Corresponding points are as-
signed the same color. The average error for the left and right
pairs is 5.21cm and 2.34cm respectively. Accurate correspon-
dence is obtained despite mesh “gluing” in areas of contact.

correspondence is computed, and costly post-processing steps
are often necessary in order to obtain accurate solutions from
the learned descriptors. On the other hand, methods based on
a label space are restricted to a fixed number of points and
rely on the adoption of an intermediate reference model.

Contribution. Our main contributions can be summarized
as follows:

• We introduce a new structured prediction model for
shape correspondence [9]. Our framework allows end-
to-end training: it takes base descriptors as input, and
returns matches.

• We show that our approach consistently outperforms
existing descriptor and correspondence learning meth-
ods on several recent benchmarks.

2. RELATED WORK

Probably the first example of learning correspondence for de-
formable 3D shapes is the “shallow” random forest approach
of Rodolà et al. [3]. More recently, Wei et al. [10] employed
a classical (extrinsic) CNN architecture trained on huge train-
ing sets for learning invariance to pose changes and cloth-
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ing. Convolutional neural networks on non-Euclidean do-
mains (surfaces) were first considered by Masci et al. [4] with
the introduction of the geodesic CNN model, a deep learn-
ing architecture where the classical convolution operation is
replaced by an intrinsic (albeit, non-shift invariant) counter-
part. The framework was shown to produce promising results
in descriptor learning and shape matching applications, and
was recently improved by Boscaini et al. [7] and generalized
further by Monti et al. [8]. These methods are instances of
a broader recent trend of geometric deep learning attempt-
ing to generalize successful deep learning paradigms to data
with non-Euclidean underlying structure such as manifolds or
graphs [11].

3. BACKGROUND

Manifolds. We model shapes as two-dimensional Rieman-
nian manifolds X (possibly with boundary ∂X ) equipped
with the standard measure dµ induced by the volume form.
Throughout the paper we will consider the space of functions
L2(X ) = {f : X → R | 〈f, f〉X < ∞}, with the standard
manifold inner product 〈f, g〉X =

∫
X f · g dµ.

The positive semi-definite Laplace-Beltrami operator ∆X
generalizes the notion of Laplacian from Euclidean spaces
to surfaces. It admits an eigen-decomposition ∆Xφi = λiφi
(with proper boundary conditions if ∂X 6= ∅), where the
eigenvalues form a discrete spectrum 0 = λ1 ≤ λ2 ≤ . . .
and the eigenfunctions φ1, φ2, . . . form an orthonormal basis
for L2(X ), allowing us to expand any function f ∈ L2(X ) as
a Fourier series

f(x) =
∑
i≥1

〈φi, f〉Xφi(x) . (1)

Functional correspondence. In order to compactly en-
code correspondences between shapes, we make use of the
functional map representation introduced by Ovsjanikov et
al. [12]. The key idea is to identify correspondences by a
linear operator T : L2(X )→ L2(Y), mapping functions on
X to functions on Y . This can be seen as a generalization
of classical point-to-point matching, which is a special case
where delta functions are mapped to delta functions.

The linear operator T admits a matrix representation C =
(cij) with coefficients cji = 〈ψj , Tφi〉Y , where {φi}i≥1 and
{ψj}j≥1 are orthogonal bases on L2(X ) and L2(Y) respec-
tively, leading to the expansion:

Tf =
∑
ij≥1

〈φi, f〉X cjiψj . (2)

A good choice for the bases {φi}, {ψj} is given by the Lapla-
cian eigenfunctions on the two shapes [12, 13], since (by anal-
ogy with Fourier analysis) it allows to truncate the series (2)
after the first k coefficients – yielding a band-limited approx-
imation of the original map. The resulting matrix C is a k×k

compact representation of a correspondence between the two
shapes, where typically k � n (here n is the number of points
on each shape).

Functional correspondence problems seek a solution for
C, given a set of corresponding functions fi ∈ L2(X )
and gi ∈ L2(Y), i = 1, . . . , q, on the two shapes. In
the Fourier basis, these functions are encoded into matri-
ces F̂ = (〈φi, fj〉X ) and Ĝ = (〈ψi, gj〉Y), leading to the
least-squares problem:

min
C
‖CF̂− Ĝ‖2F . (3)

In practice, dense q-dimensional descriptor fields (e.g., HKS
[14]) on X and Y are used as the corresponding functions.

Label space. Previous approaches at learning shape corre-
spondence phrased the matching problem as a labelling prob-
lem [3, 4, 6, 7, 8]. These approaches attempt to label each
vertex of a given query shape X with the index of a cor-
responding point on some reference shape Z (usually taken
from the training set), giving rise to a dense point-wise map
TX : X → Z . The correspondence between two queries X
and Y can then be obtained via the composition T−1

Y ◦TX [3].
Given a training set S = {(x, π∗(x))} ⊂ X × Y of

matches under the ground-truth map π∗ : X → Y , label-
based approaches compute a descriptor FΘ(x) whose optimal
parameters minimize the multinomial regression loss:

`mr(Θ) = −
∑

(x,π∗(x))∈S

〈δπ∗(x), logFΘ(x)〉Y , (4)

where δπ∗(x) is a delta function on Y at point π∗(x).
Such an approach essentially treats the correspondence

problem as one of classification, where the aim is to approx-
imate as closely as possible (in a statistical sense) the correct
label for each point. The actual construction of the full corre-
spondence is done a posteriori by a composition step with
an intermediate reference domain, or by solving the least-
squares problem (3) with the learned descriptors as data.

Discretization. In the discrete setting, shapes are represented
as manifold triangular meshes with n vertices (in general, dif-
ferent for each shape). The Laplace-Beltrami operator ∆ is
discretized as a symmetric n × n matrix L = A−1W using
a classical linear FEM scheme [15], where the stiffness ma-
trix W contains the cotangent weights, and the mass matrix
A is a diagonal matrix of vertex area elements. The mani-
fold inner product 〈f, g〉 is discretized as the area-weighted
dot product f>Ag, where the vectors f ,g ∈ Rn contain the
function values of f and g at each vertex. Note that under
such discretization we have Φ>AΦ = I, where Φ contains
the Laplacian eigenfunctions as its columns.

4. DEEP FUNCTIONAL MAPS

In this paper we propose an alternative model to the labelling
approach described above. We aim at learning point-wise de-
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Fig. 2. FMNet architecture. Input point-wise descriptors (SHOT [16] in this paper) from a pair of shapes are passed through an identical
sequence of operations (with shared weights), resulting in refined descriptors F,G. These, in turn, are projected onto the Laplacian eigen-
bases Φ,Ψ to produce the spectral representations F̂, Ĝ. The functional map (FM) and soft correspondence (Softcor) layers, implementing
Equations (3) and (6) respectively, are not parametric and are used to set up the geometrically structured loss `F (5).

scriptors which, when used in a functional map pipeline such
as (3), will induce an accurate correspondence. To this end,
we construct a neural network which takes as input existing,
manually designed descriptors and improves upon those while
satisfying a geometrically meaningful criterion. Specifically,
we consider the soft error loss

`F =
∑

(x,y)∈(X ,Y)

P (x, y)dY(y, π∗(x)) = ‖P ◦DY‖F , (5)

where DY is the n × n matrix of geodesic distances on Y , ◦
is the element-wise product, and

P = |ΨCΦ>A|∧ (6)

is a soft correspondence matrix,
which can be interpreted as the
probability of point x ∈ X map-
ping to point y ∈ Y (see inset);
here, Φ,Ψ are matrices contain-
ing the first k eigenfunctions {φi},
{ψj} as their columns, | · | acts
element-wise, and X∧ is a column-
wise normalization of X. In the formula above, the k × k
matrix C represents a functional map obtained as the least-
squares solution to (3) under learned descriptors F,G.

Matrix P represents a rank-k approximation of the spatial
correspondence between the two shapes, thus allowing us to
interpret the soft error (5) as a probability-weighted geodesic
distance from the ground-truth. This measure, introduced in
[17] as an evaluation criterion for soft maps, endows our so-
lutions with guarantees of mapping nearby points on X to
nearby points on Y . On the contrary, the classification cost
(4), adopted by existing label-based correspondence learning
approaches, considers equally correspondences that deviate

from the ground-truth, no matter how far. Further, notice that
Equation (6) is asymmetric, implying that each pair of train-
ing shapes can be used twice for training (i.e., in both direc-
tions). Also note that, differently from previous approaches
operating in the label space, in our setting the number of
effective training examples (i.e. pairs of shapes) increases
quadratically with the number of shapes in the collection.
This is a significant advantage in situations with scarce train-
ing data.

We implement descriptor learning using a Siamese resid-
ual network architecture [18]. To this network, we concate-
nate additional non-parametric layers implementing the least-
squares solve (3) followed by computation of the soft corre-
spondence according to (6). In particular, the solution to (3)
is obtained in closed form as C = ĜF̂†, where † denotes the
pseudo-inverse operation. The complete architecture (named
“FMNet”) is illustrated in Fig. 2.

5. UPSCALING TO DENSE MAPS

For increased efficiency, we down-sample the input shapes
to 15K vertices by edge contraction [19]. Given two down-
sampled shapes X̃ and Ỹ , the network predicts a k×k matrix
C̃ encoding the correspondence between the two. Since this
matrix is expressed w.r.t. basis functions {φ̃i}i, {ψ̃j}j of the
low-resolution shapes, it can not be directly used to recover
a point-wise map between the full-resolution counterparts X
and Y . Therefore, we perform an upscaling step as follows.

Let πX : X̃ → X be the injection mapping each point
in X̃ to the corresponding point in the full shape X (this
map can be easily recovered by a simple nearest-neighbor
search in R3), and similarly for shape Y . Further, de-
note by T̃ : X̃ → Ỹ the point-to-point map recovered from
C̃ using the baseline recovery approach of [12]. A map
T : X ⊃ Im(πX ) → Y is obtained via the composition
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Fig. 3. Comparison between our structured prediction model
(FMNet), metric learning (Siamese), and baseline SHOT in
terms of CMC (left) and geodesic error (right). While the
Siamese model produces better descriptors in terms of prox-
imity (left), these do not necessarily induce a good functional
correspondence (right).

T = πY ◦ T̃ ◦ π−1
X . However, while T̃ is dense in X̃ , the map

T is sparse in X . In order to map each point in X to a point
in Y , we construct pairs of delta functions δxi

: X → {0, 1}
and δT (xi) : Y → {0, 1} supported at corresponding points
(xi, T (xi)) for i = 1, . . . , |X̃ |; note that we have as many
corresponding pairs as the number of vertices in the low-
resolution shape X̃ . We use these corresponding functions to
define the minimization problem:

C∗ = arg min
C
‖CF̂− Ĝ‖2,1 , (7)

where F̂ = (〈φi, δxj
〉X ) and Ĝ = (〈ψi, δT (xj)〉Y) contain the

Fourier coefficients (in the full-resolution basis) of the corre-
sponding delta functions, and the `2,1-norm allows to discard
potential mismatches in the data. A dense point-to-point map
between X and Y is finally recovered from the optimal func-
tional map C∗ by the nearest-neighbor approach of [12].

6. COMPARISON TO METRIC LEARNING

As a proof of concept, we study the behavior of our frame-
work when the functional map layer is removed, and the soft
error criterion (6) is replaced with the siamese loss [20]:

`s(Θ) =
∑

x,x+∈S

γ‖FΘ(x)− FΘ(x+)‖22

+
∑

x,x−∈D

(1− γ)(µ− ‖FΘ(x)− FΘ(x−)‖2)2
+ , (8)

where γ ∈ (0, 1) is a trade-off parameter, µ > 0 is the margin,
and (x)+ = max(0, x). Here, the sets S,D ⊂ X × Y con-
stitute the training data consisting of knowingly similar and
dissimilar pairs of points respectively. By considering this
loss function, we transform our structured prediction model
into a metric learning model. The learned descriptors FΘ(x)

Fig. 4. Results of FMNet on the SHREC’16 Partial Corre-
spondence benchmark [23]. Each partial shape is matched to
the full shape on the left; the color texture is transferred via
the predicted correspondence.

can be subsequently plugged into (3) to compute a correspon-
dence; this metric learning approach was recently used in a
functional map pipeline in [21]. For this test we use FAUST
templates [22] as our data and SHOT [16] as an input feature.

From the CMC curves of Fig. 3 (left) we can clearly see
that the model (8) succeeds at producing descriptors that at-
tract each other at corresponding points, while mismatches
are repulsed. However, as put in evidence by Fig. 3 (right),
these descriptors do not perform well when they are used for
seeking a dense correspondence via (3). Contrarily, our struc-
tured prediction model yields descriptors that are optimized
for such a correspondence task, leading to a noticeable gain
in accuracy.

7. MISSING PARTS AND TOPOLOGICAL NOISE

Our framework does not rely on any specific shape model, as
it learns from the shape categories represented in the training
data. In particular, it does not necessarily require the objects
to be complete shapes: different forms of partiality can be
tackled if adequately represented in the training set.

We demonstrate this by running our method on the re-
cent SHREC’16 Partial Correspondence challenge [23]. The
benchmark consists of hundreds of shapes of multiple cate-
gories with missing parts of various forms and sizes; a train-
ing set is also provided. We selected the ‘dog’ class from
the ‘holes’ sub-challenge, being this among the hardest cat-
egories in the benchmark. The dataset is officially split into
just 10 training shapes, and 26 test shapes. Qualitative exam-
ples of the obtained solutions are reported in Fig. 4.

Given the good results on shapes exhibiting missing parts,
it may come as a surprise that topological alterations tend to
be detrimental – changes of topology can be seen as a form
of partiality, and we would expect similar accuracy in such
cases. The underlying reason is that Laplacian eigenfunctions
are inherently sensitive to topological changes. We propose
to mitigate this issue by modeling the expected perturbations
using a construction similar to partial functional maps [24],
specifically, by incorporating partiality priors into the con-
struction of matrix C within our structured prediction model.
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D. Cremers, “Anisotropic diffusion descriptors,” Com-
puter Graphics Forum, vol. 35, no. 2, pp. 431–441,
2016.

[7] D. Boscaini, J. Masci, E. Rodolà, and M. M. Bronstein,
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