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∗Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
§Depatment of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
†Electrical and Computer Engineering Department, Université Laval, Quebec City, Canada

¶Department of ECE, University of Illinois at Chicago, Chicago, Illinois
{bnasir, vural, oyildiz}@ceng.metu.edu.tr, badawi@ee.bilkent.edu.tr,

arman.afrasiyabi.1@ulaval.ca, aecyy@uic.edu

ABSTRACT

We present a non-Euclidean vector product for artificial neural net-
works. The vector product operator does not require any multiplica-
tions while providing correlation information between two vectors.
Ordinary neurons require inner product of two vectors. We propose
a class of neural networks with the universal approximation prop-
erty over the space of Lebesgue integrable functions based on the
proposed non-Euclidean vector product. In this new network, the
"product" of two real numbers is defined as the sum of their absolute
values, with the sign determined by the sign of the product of the
numbers. This "product" is used to construct a vector product in RN .
The vector product induces the l1 norm. The additive neural network
successfully solves the XOR problem. Experiments on MNIST and
CIFAR datasets show that the classification performance of the pro-
posed additive neural network is comparable to the corresponding
multi-layer perceptron and convolutional neural networks.

Index Terms— non-Euclidean operator, additive neural net-
works, multiplication-free operator

1. INTRODUCTION

Deep Neural Networks (DNN) and Convolutional Neural Network
(CNN) architectures achieve human performance in many computer
vision problems [15], [16, 14, 24]. However, the number of param-
eters in these high-performance networks ranges from millions to
billions which require computers capable of handling high compu-
tational complexity, high energy and memory size. Recent develop-
ments in VLSI industry create powerful mobile devices which can be
used in many practical recognition applications. ANNs are already
being used in drones and unmanned aerial vehicles for flight control,
path estimation [5],[10].

However, the current structure of the ANNs, especially, deep
networks, cannot be implemented effectively on mobile devices due
to high energy requirements. A typical neuron needs to perform
three main tasks to produce an output: (i) an inner product operation
involving multiplication of inputs by weights, (ii) addition, and (iii)
pass the result of the inner product through an activation function.
The multiplication operation is the most energy consuming operation
[11].

In this paper, we propose an l1 norm based energy efficient
neural network, called additive neural network, that replaces the
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multiplication operation with a new energy efficient operator, called
mf-operator. Instead of multiplications, we use sign multiplications
and addition operations in a typical neuron. The sign multiplication
of two real numbers is a simple bit operation.

Related Work: The l1 norm based vector product is first intro-
duced in 2009 [26, 25, 4, 8] and used in some image processing
applications. A multiplication free neural network structure is pro-
posed in 2015 [3]. However, the recognition rate was below 10%of a
regular neural network. In this article, we are able to match the per-
formance of regular neural networks by introducing a scaling factor
to the l1 norm based vector product and new training methods. For
example, we are only 0.034% below the recognition rate of a regular
neural network in MNIST dataset.

Other solutions to energy efficient neural networks include ded-
icated software for a specific hardware, i.e. neuromorphic devices
[9, 18, 20, 17, 19], [11], [2]. Although such approaches reduce energy
consumption and memory usage, they require special hardware. Our
neural network framework can be implemented in ordinary micropro-
cessors and digital signal processors.

Rastegari et al. proposes two methods to provide efficiency on
CNNs. The first method, Binary-Weight-Networks (BWN), approx-
imates all the weight values to binary values [21]. As a result the
network needs less memory (nearly ×32). Convolutions can be esti-
mated by only addition and subtraction, which eliminates the power
draining multiplications. Although BWN catches the state-of-the-
art model on ImageNet dataset, the error rate on MNIST dataset
is 9.88%. The second method proposed by them is called XNOR-
Networks where both weights and inputs to the convolutional and
fully connected layers are approximated by binary values.This method
offers ×58 faster computation on CPU on average and results 12%
loss in accuracy on the average. However, the recognition accuracy
is lower than the ordinary neural networks. In [6], BinaryConnect
is proposed, which is a DNN where weights are binarized during
feedforwarding pass. In the backpropagation pass, the sensitivities
are calculated for the binary weights but real weights values are re-
tained for parameters update. The weight binarization can be either
deterministic or stochastic. In [12], binarized neural networks are
proposed, where weights and activations are binarized during forward
pass. The gradient is altered to make it possible for back-propagating
the error. Furthermore, with GPU optimization, they could achieve
faster forward passes (nearly ×7).
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2. NEW VECTOR PRODUCT OPERATOR AND ANN

Let x and y be two vectors in Rd. We define a new vector product
based on a new operator as follows:

x⊕ y :=

d∑
i=1

sign(xi × yi)(|xi|+ |yi|), (1)

where x = [x1, . . . , xd]
T ,y = [y1, . . . , yd]

T ∈ Rd. We call the
new operator the multiplication-free (mf) operator which can also be
represented as follows: x⊕y :=

∑d
i=1 sign(xi)yi+sign(yi)xi. The

new vector product,⊕, operation does not require any multiplications.
The operation (xi × yi)(|xi| + |yi|) uses the sign of the ordinary
multiplication, but it computes the sum of absolute values of xi and
yi. It requires summation, unary minus operation and if statements
which are all energy efficient operations. Ordinary inner product of
two vectors induces the `2 norm. Similarly, the vector product defined
in (1) induces a scaled version of the `1 norm: x⊕ x = 2||x||1.
We introduce the following notation for a compact representation of
the mf-operation of a vector by a matrix. Let x ∈ Rd and W ∈
Rd×M be two matrices, then the mf-operation between W and x is
defined as follows;

x⊕W :=
[
x⊕w1 . . . x⊕wM

]T ∈ RM , (2)

where wj is jth column of W for j = 1, 2, . . . , M .

3. ADDITIVE NEURAL NETWORK (ADDNET) WITH
MF-OPERATOR

We define a new neuron by replacing inner-product of a classical
neural network by the vector product defined in (1). A neuron in
a classical neural network is represented by the activation function
f(xW + b), where W ∈ Rd×M , b ∈ RM are weights and biases,
respectively, and x ∈ Rd is the input vector. A neuron in AddNet is
represented by the activation function, the affine transform is modified
by using the mf-operator as follows;

f(a� (x⊕W) + b), (3)

where � is element-wise multiplication operator, W ∈ Rd×M ,
a, b ∈ RM are weights, scaling coefficients and biases, respectively,
and x ∈ Rd is the input vector. The neural network, where each
neuron is represented by the activation function defined in (3), is
called Additive Neural Network (AddNet).

In AddNet, we replace the affine scoring function (xW+b) of
a classical neural network by the scoring function defined over the
mf-operator, (a � (x ⊕W) + b). Therefore, most of the neural
networks can easily be converted into the additive network by just
representing the neurons with the activation functions defined over
mf-operator, without modification of the topology and the general
structure of the optimization algorithms of the network.

Training the AddNet: Standard back-propagation algorithm
is applicable to the AddNET with some approximations. Back-
propagation algorithm computes derivatives with respect to current
values of parameters of a differentiable function to update its pa-
rameters. The activation function, f , can be excluded during these
computations for simplicity as its derivation depends on the specific
activation function and choice of activation function does not af-
fect the remaining computations. Hence, the only difference in the
AddNet training is the computation of the derivatives of the argument,

(a � (x ⊕W) + b), of the activation function with respect to the
parameters, W,a,b, and input, x, as given below:

∂(a� (x⊕W) + b)

∂a
= x⊕W, (4)

∂(a� (x⊕W) + b)

∂b
= 1M , (5)

∂(a� (x⊕W) + b)

∂xi
=

 a1(sign(Wi,1) + 2Wi,1δ(xi))
...

aM (sign(Wi,M ) + 2Wi,Mδ(xi))


≈a� sign(wi),

(6)

∂(a� (x⊕W) + b)

∂Wi,j
=(aj(sign(xi) + 2xiδ(Wi,j)))ej

≈ ajxiej ,

(7)

where a,b ∈ RM , and W ∈ Rd×M are the parameters of the
hidden layer, x ∈ Rd is the input of the hidden layer, ei ∈ RM

is the ith element of standard basis of RM , wi is the ith column
of W, sign(wi) =

∑M
j=1 sign(Wi,j)ej for i = 1, . . . , M ,

1M =
∑M

j=1 ej , and δ is the Dirac-delta function which is due to
d
dx
sign(x) = 2δ(x). We approximate the derivative operations in

above equations by ignoring the case of x = 0.
Existence and Convergence of the Solution in AddNet: We show

that AddNet satisfies the universal approximation property of [7],
over the space of Lebesgue integrable functions. Then, we make a
brief analysis for the convergence properties of the back propagation
algorithm when the inner product is replaced by the mf-operators.

Universal Approximation Property: In the following proposition,
we show that AddNet satisfies the universal approximation theorem
for linear and ReLU activation functions.

Proposition 3.1. The additive neural network (AddNet) defined us-
ing the mf-operator with the identity activation function or ReLU
activation function

f(a� (x⊕W) + b) = ReLU(a� (x⊕W) + b), (8)

is dense in L1(In).

In order to prove the above proposition, the following two lemmas
should be proved first:

Lemma 3.2. Let the activation function f be the identity operator.
There exist an AddNet, defined using the mf-operator, which can
compute g(x) = sign(yTx+ b), for any y ∈ Rd and b ∈ R.

Lemma 3.3. If the function g(x) can be computable with the identity
activation function then there exist an AddNet architecture with a
ReLU activation function, which can also compute g(x).

We omit the proofs due to the lack of space.
Proof of Proposition 3.1 This can be shown by the universal

approximation theorem for bounded measurable sigmoidal functions
[7]. This theorem states that finite sums of the form

G(x; {αi}Ni=1, {yi}Ni=1, {θi}Ni=1) =

N∑
i=1

αiσ(y
T
i x+ θi), (9)
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are dense in L1(In), where αi, θi ∈ R and x,yi ∈ Rd for i =
1, 2, . . . , N . It can be easily shown that sign function is a bounded
sigmoidal function. Lemma 3.2 shows that, if the activation func-
tion is taken as identity, then there exist networks which compute
sign(yT

i x+ θi) for i = 1, 2 . . . , N . Lemma 3.3 shows that there
are equivalent networks using ReLU as the activation function which
compute the same functions. These networks can be combined with
concatenation of layers of the additive neural networks to a single
network. Also, proposed architecture contains fully connected lin-
ear layer at the output, and this layer can compute superposition of
the computed sign functions yielding G(x). Since G(x) can be
computable by the additive neural networks, and G(x) functions are
dense in L1(In), then functions computed by the additive neural
networks are also dense in L1(In).

Computational efficiency: AddNet contains more parameters
then the classical neuron representation in MLP architectures. How-
ever, each hidden layer can be computed using considerably less
number of multiplications. A classical neural network, represented
by the activation function f(xW+b), containingM neurons with d
dimensional input, requires d×M many multiplications to compute
xW+b. On the other hand, the additive neural network, represented
by the activation function, f(a�(x�W)+b) with the same number
of neurons and input space requires M multiplications to compute
a � (x �W) + b. This reduction on number of multiplications is
especially important when input size is large or hidden layer contains
large number of neurons. If activation function is taken as either
identity or ReLU, then output of this layer can be computed without
any complex operations, and efficiency of the network can be substan-
tially increased. Multiplications can be removed entirely, if scaling
coefficients, a are taken as 1 or integer power of 2.

4. EXPERIMENTAL RESULTS

We used MLP with hidden layers, as well as a CNN model in three
different classification problems, namely XOR problem, MNIST and
CIFAR datasets. In the MLP models the hidden layer(s) also contains
neurons constructed using the mf-operator. Each neuron consists of a
scoring function and an activation function. In this study, we call the
widely used classic scoring function (xW + b) as c-operator.

Tensorflow [1] is used to train W and b using backpropagation
[22]. In the first experiment, we examine the ability of additive
neural network to partition a simple nonlinear space, solving the
XOR problem. In this regard, we could solve the XOR problem with
a single hidden layer with 100% accuracy. We compare the classical
MLP with affine scoring function and additive neural network with
mf-operator. Since a single hidden layer MLP with classical affine
operator (c-operator) can solve XOR problem, we used one hidden
layer in both classical and the proposed architectures. Mean squared
error is used as cost function to measure the amount of loss in training
phase of the network, and we fixed the number of neurons in the
hidden layer to 10. AddNet with mf-operator can successfully solve
the XOR problem and reached to 100% accuracy. We also investigate
the rate of changes in loss changes at each epoch. We note that some
of the runs do not reach to minimum values in 1000 epochs. This
shows that more epochs are needed in some runs.

Left and right sides of Fig. 1 show the change of loss in the
MLP using c-operator and mf-operator, respectively, with ReLU
as the activation function. We rerun the network for 200 times in
1000 epochs, and used k-fold cross validation to specify the learning-
rate parameter of SGD. Each curve shows the variations in loss or
cost value (x-axis) across the epochs (y-axis) in one specific run
of the network. The cost value of the network with the mf-operator

Fig. 1. The plots of loss changes in the stochastic gradient descent
(SGD) algorithm in the training phase of XOR problem while using
single hidden layer MLP. While the Figure (2.a) shows the the changes
of loss in the network by using classical score function (c-operator),
Figure (2.b) (right) shows the loss changes in the same network with
the proposed (mf-operator). Results were obtained by training the
network 200 times in 1000 epochs.

decreases along the epochs and acts similar to classical affine operator,
called c-operator.

In the second experiment, we classified the digits of MNIST
dataset of [16]. We used the cross-entropy based cost function and
stochastic gradient descent (SGD) to train the network.we used a
batch size equal to 150. AddNet MLP with (a = 1) reaches to the
performance of classic MLP with c-operator in MNIST. Best results
were obtained using ReLU activation function. AddNet with two
(three) layers achieves 98.09 (97.95) percent recognition accuracy
slightly below the ordinary MLP with rates of 98.43 (two layers) and
98.22 (three layers) percent recognition accuracy, respectively.

We also tested two CNN models over MNIST and CIFAR-
10 datasets by applying mf-operator in the convolutional units
and c-operator in the fully connected units. In this regard, let
Wl ∈ RH×W×D×K be the filter tensor of the lth layer, where
H,W and D are the filter height, width and depth, respectively and
K is the number of filters in the filter bank. We associate a scaling
parameter a ∈ RK with this tensor and the corresponding feature
map. i,e, each filter wl

k and its 2D output will be associated with a
scalar alk.
In our experimentation, we adopted the MNIST model available
in "Tensorflow models"[1]. The model has 2 convolutional layers
as well as two dense (fully connected) layers. The filter banks
are W1

conv ∈ R5×5×1×32 and W2
conv ∈ R5×5×32×64, with each

convolutional layer followed by 2 × 2 max pooling. The sizes
of the dense layers are 512 and 10 neurons. This model achieves
classification accuracy of 99.2% over test data after training for
10 epochs. The cost function used is mean-square error and the
activation function used is ReLU .

In a feed-forward pass, the number of add-multiply operations
in the convolutional layers is roughly 10.6 Million (mostly in the
second layer), whereas the number of add-multiply operations in
the dense connections is roughly 1.6 Millions. In this case, since
most of the computation takes place in the convolutional units, we
opted to replace the c-operator in the add-multiply operations in the
convolutional units with our mf-operator and keep the dense units
intact.

Table 1 summarizes our experimental results in "convolutional"
neural networks. In this case, we replace the multiplication operation
in convolutions with the mf-operator. The model does not perform
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Table 1. Summary of classification accuracy results over MNIST test
dataset for the hybrid CNN model. All the results are obtained after
training the models for 10 epochs

Case scaling trainable test
No. value accuracy
1 al = 1

H×W×D
no 86 %

2 alk = σ(wl
k) no 97.6 %

3 alk =
||wl

k||
2
2

H×W×D
no 98.5 %

4 alk =
||wl

k||1
H×W×D

no 99.0%

5 init: alk = σ(wl
k) yes 98.4%

well when the scaling parameter a is fixed in a convolutional setting.
But, the model achieved 99.0% accuracy over MNIST datasets, when

the scaling parameter is set to ||wl
k||1

H×W×D
, where ||wl

k||1 is the `1
norm of the kth filter wl

k in the lth layer (norm of a 3D tensor). We
also studied other scaling methods such as `2 norm (case 4) and the
standard deviation estimate σ for filter wl

k (case 3). These methods
could also achieve decent accuracy rates for a rather simple model.
When a is set a trainable parameter for each filter, we were able to
achieve accuracy of 98.4%. It is important to note that calculating
alk is only done during training. Since weights will be learned and
fixed afterwards, we can store alk values as constants and use their
values later during inference without having to find them again from
the readily learned weights. Furthermore, it may be possible to
approximate alk to multiples (or fractions) of the form 2n where
n ∈ Z. In this way, there will be no need to perform any floating
point multiplication.

In a similar fashion, we implemented a hybrid model to be trained
over CIFAR-10 dataset [13]. CIFAR-10 dataset consists of 60000
32× 32 RGB natural images of 10 categories. In this model, we re-
placed the multiplication in the convolutional units with mf-operator.
The model is a direct adaptation of the CIFAR-10 model in "Ten-
sorflow models", where it comprises two convolutional layers, 2
dense layers and a softmax layer. The input images are randomly
cropped into 28 × 28 × 3 subsamples. Furthermore, they are ran-
domly flipped horizontally and contrast is perturbed randomly as a
means to acheive data augmentation online [23]. The model con-
sists of two convolutional layers with W1

conv ∈ R5×5×3×64 and
W2

conv ∈ R5×5×64×64 and two dense layers with 384 and 192 neu-
rons, followed by a softmax layer of 10 neurons. This model achieves
86 % accuracy over testing data. The cost function used is cross
entropy with softmax layer.
It is important to note that the original model uses local response
normalization after each pooling layer. However, based on our early
investigation, we could achieve better without local response nor-
malization as it could not exceed a test accuracy of 76%. We could
achieve an accuracy of 80.1% over the testing dataset using scaling
alk = σ(wl

k) where σ is the standard deviation of the weights of
each 3D kernel in the convolutional layers after 250k iterations (640
epochs) using a batch size of 128 and RMSProp optimizer. Con-
trary to the results over MNIST dataset, the scaling using `1 norm
achieved slightly worse results with accuracy 79.5 %. When alk is
set trainable and initialized by the standard deviation of the weight,
it could achieve 80.8% after 180k epoch using the same optimizer.

Table 2. Summary of classification accuracy results over CIFAR-10
test dataset for the hybrid CNN model. All the results are obtained
using RMSProp optimizer

scaling value test accuracy

alk = 1
H×W×D

≈ 70%

al trainable (size X × Y ×K) 76.7%
alk = σ(wl

k) 80.1%

alk =
||wl

k||1
H×W×D

79.5%

alk trainable (size K) 80.8%
equation 10: f(wl

k) = σ(wl
k) 80.7 %

equation 10: f(wl
k) =

||wl
k||1

H×W×D
81.0 %

Furthermore, we used hybrid scaling as follows:

alk = αl
kf(w

l
k) + βl

k (10)

where α and β are set trainable and f is function dependent upon wl
k

such as: standard deviation σ and `1 norm. The trainable α and β are
regularized such that α stays close to unity and β stays small enough
by adding two regularization terms to the general loss expression as
follows:

loss = CE + λ1

∑
||αl

k − 1||22 + λ2

∑
||βl

k||22 (11)

where CE is the cross entropy. Using this method, we could achieve
an accuracy of 80.7% over testing data with f(wl

k) = σ(wl
k) after

250k iterations (640 epochs). Furthermore, we achieved the highest

accuracy of 81.0 % with f(wl
k) =

||wl
k||1

H×W×D
. Our choices for λ1 and

λ2 were 10e− 3 and 10e− 4, respectively. Table 2 summarizes our
results.

5. CONCLUSION

In this paper, we propose the non-Euclidean AddNet structure. The
key operator of AddNet is the mf-operator that eliminates the energy-
consuming multiplications in the conventional neural network archi-
tectures. As a result, AddNet can be used in mobile devices. AddNet
can perform as good as ordinary neural networks in MNIST and CI-
FAR datasets. We will study the performance of AddNet in ImageNet
and other widely used data sets.
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