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ABSTRACT to be highly flexible in expressing complex and highly non-
Parametric approaches to Learning, such as deep Iearni"near functiOI_'ls [2. 3]' There are, howevt_ar, a numberofc_hal
(DL), are highly popular in nonlineér regression, in spite ges _as_somated with deeplearnmg,chle_famong th_erans th
f th’ . ¢ v difficult traini ith their i ' "~ of obtaining the exact assessment of their expressive power
ot their extremely diicull training wi €Ir INcreasing 'y nich remains to this day, an open problem. An important
complexity (e.g. number of layers in DL). In this paper, xception is the single-layer network for which the so chlle

we present an alternative semi-parametric framework Whicﬁniversal apbroximation property (UAP) has been estabiish
foregoes the ordinarily required feedback, by introdudire . for some ti?npe[4, 5], andpthi)ch )i/s(cleaZIy a highly desirable

novel idea of geometric regularization. We show that certai operty. Another practical difficulty with deep learning i
deep learning techniques such as residual network (ResN at the output becomes unproportionally sensitive to te p
architecture are closely related to our approach. Hende, OYameters of different layers, making it, from an optimigati

technique can be used to analyze these types of deep lea%rspective, extremely difficult to train [6]. A recent st

Ing. Moreover, we present prehmmary results Wh'(.:h Comclrmis the so-called residual network (ResNet) learning, witieh
that our approach can be easily trained to obtain comple

tfoduces bridging branches to the conventional deep legrni
structures. architecture [7]. In this paper, we address the above idspes
Index Terms— supervised learning, back propagation,proposing a different perspective on learning with a substa
geometric approaches tially different architecture, which totally forgoes angeid-
back. Specifically, we propose an interative foward projec-
tion in lieu of back propagation to update parameters. As
such, this may rapidly yield an over-parametrized systeen, w
restrict each layer to perform an "incremental” update an th

Learning a nonlinear function through a finite number ofd ¢ natel tured by th lizat f a dif
input-output observations is a fundamental problem of supe ata, as approximately captured by the realization ot a dit-
ferential equation, we refer to as geometric regularirgtis

vised machine learning, and has wide applications in seienc . . i i ) .
and engineering. From a statistical vantage point, thi-pro discussed in Section 2.1. The formulation of this geometric

lem entails a regression procedure which, depending on t %gf!farlza:!or allowstus_;[_(r)] t|etthde an%yS'Stpf d?re]_p ?Eejtwork
nature of the underlying function, may be linear or nonlmea 0 differential geometry. The study in [8] notices this titla,

In the past few decades, there has been a flurry of advanceslﬂ'lIt adopts a different approach. In part[cular, we conyectu
the area of nonlinear regression [1]. Deep learning is gerha a converse of the celebrated Frobenius integrability gmor

one of the most well-known approaches with a promising an o?';r}aprg.tle n;;arlrl]yozr?ggsdgeungg;ﬁégp%ngrgit'oreggﬁerre_
remarkable performance in great many applications. "y m P ' P P

Deep learning has a number of distinctive advantages: ii'minary r_esu_lts in Section 5, and show that foregoing back
It relies on a parametric description of functions that &g-e propagationin a neural network does not greatly limit the ex

ily computable. Once the parameters (weights) of a deep nely SSIVE power Qf_deep networks, gnd in fact potentially de-
. . greases their training effort, dramatically.

work are set, the output can be rapidly computed in a fee

forward fashion by a few iterations of affine and elementwise

nonlinear operations; 2. it can avoid over-parametrizelip

adjusting the architecture (number of parameters) of tite ne

work, hence providing control over the generalization powe

of deep learning. Finally, deep networks have been observed

1. INTRODUCTION
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2. MMSE ESTIMATION BY GEOMETRIC For geometric regularization, we restrict the choice of the
REGULARIZATION tangent vector to a closed co@g C T in the tangent space.
In the case of function estimation, whefé and hence the
For the sake of generality, we consideC4 Banach man- tangent spacd’, is infinite dimensional, we adopt a para-
ifold* F of functionsf : R" — R™, wheren,m are the metric definition ofC; by restricting the tangent vector to a
dimensions of the data and label vectors, respectively, anghite dimensional space. However, this might not resthet t
each elemenf € F represents a candidate model betweerfunction to a finite dimensional submanifold. A particujarl
the data and the labels. The arbitrary choiceradllows one important case, where geometric regularization simplifees
to impose structural properties on the models. Due to spacgparametric (finite dimensional) manifold restriction igem
limitation and for clarity sake, we just focus on the simplerpy the Frobenius integrability theorem [10, 11]:
case ofF = L2, i.e. the space of square integrable functions
and defer further generalizations to a later publicatiooré4
over, consider a probability spa¢®, >, 1), and two random
vectorsx : 2 — R™ andy : Q — R™ representing sta-
tistical information about the data. As samples,y;) for
t=1,2,...,Tof x,y are often provided, in which case their
empirical distribution is used.
We consider the supervised learning problem by minimiz- [6(F), ¥ (H)] € Cr,
ing the following mean square error (MSE), where|. ,.] denotes a Lie bracket [11].

Theorem 1 (Frobenius theorem)Suppose that’; is ann-
dimensional linear subspace @f. For any choice of(f) €
C', the solution of Eq. (3) remains on andimensional sub-
manifold of 7 only, depending on the initial poinfy, iff Cf
is involutive, i.e. for any two vector fieldg f), ¢ (f) in Cy
we have that

L(f)=E [||f(x) _ YHQ : (1) A simple example of an involutive regularization is when

where E[.| denotes expectation. For observed samples Cr =L Wof + Z Wif*+0b| W, e R™™ b e R™
(xt,y¢), this criterion simplifies to 1

1 Z where f* are fixed functions. It is clear that the solutign
mé%f Z £ (xt) — yel|3- (2) remains ian_0 from an init.ial fo- Hence, this case corre-
f t=1 sponds to a linear regression. Selecting a nonlinear famcti
E R — R, we can write a more general form of the geomet-

In practice, the statistical assumptions in Eq. (2) are lkig ric regularization discussed here, as follows

underdetermined and minimization of MSE (MMSE) leads to

undesired solutions. To cope with this, additional comstsa Cr =

are considered to tame the problem by way of regulariza- r

tion. For example the seF can be restricted to a (finite- {F(f) [Wof + 0 Wi fF 40| [ Wy, e R b e Rd} (5)

dimensional) smooth sub-manifold. This is an implicit fact =1

in parametric approaches, such as deep neural networks. where f* are arbitrary fixed functions anBi(a) for a =
(a1,a2,...,aq4) € R? is a diagonal matrix with diagonals

2.1. Geometric Regularization Iy = dg/dx(a;).

We introduce a more general type of regularization, which
also includes parametric restriction. Our generalizaisdn-

spired by the observation that standard (smooth) optiieat e solution to the differential equation in Eq. (3) with the
techniques such as gradientdescent, are based on a "eal'zabeometric regularization in Eq. (5) requires a specificatib

3. ALGORITHMIC SOLUTION

of a differential equation of the following form, the tangent vectorg(f) € C;. To preserve a good control
df on the computations, and much like for the DNN architecture,
d_q-T = o(fr), (3)  we definef : R* — R?, where the reduced dimensidn< n

is a design parameter. Then, the desired function is caémlila
whereg(f) € Ty is atangent vector oF at f. The resulting asDf, + ¢ whereD € R™*< andc € R™ are fixed. Letting
solution is typically in an iterative form, as follows, fo(x) = Uz whereU € R9*™ is a constant dimensionality

reduction matrix, we rewrite the MSE objective in Eq. (1) as

frer = fe + med(fi), (4) )
L(f) =E[lly = Df(x) = ell3] -
where y; is the step size at iteration = 0,1,2,.... The 2
tangent vecton( f.) is often selected as a descent direction We subsequently apply the steepest descent principlela yie
where according to Eq. (1)[ddr < 0. the following optimization:
1A Banach manifold is an infinite-dimensional generalizatiaf a con- _ : d_L
ventional differentiable manifold [9]. ¢ = arg ¢ec§l\1||l¢rul||2§1 dr’ 6)
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We next observe that under mild assumptions, whereW, ¢,, by, are givenin Eq. (7).
dL _
— = _E Wof +> Wif*+b

z , DT'(f) >
el

wherez = y — Df(x) — ¢ andWj, Wy, b are to be decided To select the remaining pa_rgmeta@s__ﬁandut, we mgnually
based on the optimization in Eq. (6). After some manipula—tune parametersy,, 5, specifically utilize two strategies when
tions. this leads to tuning y,: a) fixing u; = p and b) using line search. The

second method, we obtain by simple computations as

y 3.3. Learning Parameter Selection

¢r =T(f) lWO,ff + ; Wi g f* +bs] = E[z] Dy
- " E[IDe3]
where
Wo.; = E [D(f(x))DTzfT(x)] wherez, =y — D f,(x) — ¢, and
Wi =E [D(fx)D7z (%) (x)], k=1,2,...,

e =T(fe) | Voufe + Z Vi /" + e
=1

by =E[I(f(x))D" 2| (7)

are specialized values of,, Wy, b, respectively.
3.4. Incorporating Shift Invariance

3.1. Initialization . . :
In the context of deep learning, especially for image prsces

An efficient execution of the above procedure requires us tng, convolutional networks are popular. They differ frame t
judiciously select the parametet§ D,c. We selectU as regular deep networks in attempting to induce shift invasé
the collection of basis vectors of the firgtprincipal com- in the linear operations of some layers, by way of convotutio
ponents ofk, i.e. U = Pl whereE[xx”] = PXPT isthe (Toeplitz matrix). We may adopt the same strategy in geo-
Eigen-representation (SVD) of the correlation matidx,=  metric regularization by further assuming th& in Eq. (5)

[p1 p2 -..pn] @ndP; = [py p2 ...pq]. The matriced/, c are  represents a convolution. We skip the derivations, for ngt o
selected by minimizing the MSE objective with= f,. This  space limitation reasons, but also for their similaritylioge
yields, leading to Eq. (7). The resulting algorithm with the momen-

1 tum method is similar to Eq. (8) wheil&,_ ; is replaced by
D=E[yfy x)]E[fox)fi x)] , Weonv. s, defined as

¢ =E[y] - DE[fo(x)].

This also affords us to update these matrices in the course of
the optimization,

Wconv,f = arg mV[a/“X<Wa W07f>’

. where the optimization is over unit-norm convolution (Tt

D+ E[yff ®|E[fx)fx)] , matrices. It turns out that since Toeplitz matrices forme-ve
tor space Weony, s is a linear function ofit, ; and can be
¢« Ely] - DE[fi(x)]. quickly calculated [14]. Due to space limitation, we defes t

details to [15].
3.2. Momentum Method

Momentum methods are popular in machine learning and lead 4. THEORETICAL DISCUSSION

to considerable improvement in both performance and con-

vergence speed [12, 13]. Since the originally formulated dg, 1 Relation to Deep Residual Networks

not conform to our geometric regularization framework, we

proposed an alternative approach to effectively mix thenlea The proposed geometric regularization for nonlinear regre
ing direction¢ at each iteration with its preceding iterates sion in Eq. (5) is inspired by the advances in the field of neura
to better control any associated rapid changes over ib@sti networks and deep learning. Recall that a generic deep artifi
(low-pass filtering). Here to keep the geometric reguldigra.  cial neural network (DNN) represents a sequence of funstion

structure, we instead mix the parametdrg, b. This leadsto  (hidden layers)fy(x), f1(z), ..., fr(x) where fo(z) = =
the following modification in the original algorithmin Eat} ~ andf; fort = 0,1,2, ..., is d;-dimensional, wherd; is the
. network width in thet" layer. The relation of these func-
feer = fe + D) | Voufe + > Veuf* +eil, tions is plotted in Figure 1 (a). The so-called residual net-
k=1 work (ResNet) architecture modifies DNNs by introducing
Vitrr = awVie + Wi, E=0,1,...,m, bridging branches (edges) as shown by Figure 1 (b). We ob-
et+1 = Per + by, (8) serve that the geometric regularization in Eq. (5) corraggo
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Fig. 1. Schematic scheme of a single layer in a)ANN Iteration

b)ResNet and c)modified ResNet Architectures.
Fig. 3. Performance of different step size selection strategies.

Method Performance
plain iterations 97.4%
con\2/oIt|t|on<|’:1I |ter_at|ons gggzﬁ) length 5, fixed step sizg = 1 anda; = 0.95, and D, ¢
~Stage learning LD updated at each iteration. We also consider a 2-stage proce-

dure, where in the firsio iterations, convolutional matrices
are considered, and plain iterations are subsequentlyeappl
In both stages, the step size is fixedute= 3 anda = 0.95,

to a modified version of ResNets, as depicted in Figure 1 (c)vhile the matriced, ¢ are updated at each iteration.

Fig. 2. Performance of different learning strategies

which can be written as Figure 3 compares different strategies for step size se-
lection with convolutional iterations by their associafsat-
fror = gWife + b)) — g(fi) + fr- (9 formance, i.e. the fraction of correctly classified images i

. . . different iterations. The best asymptotic performancebis o
More concretely, wheiV;, b; are respectively near identity tained by fixingu = 1. Faster convergence may be obtained

and near zero, i.6¥; = I+eW, andb; = eb; for small values by larger step sizes at the expense of a decreased asymp-
of ¢, we observe by Taylor expansion of Eq. (9) with respect 9otic performance. For example for — 6, the algorithms

e that the differential equation in Eg. (3) with geometric+eg reache€)6% accuracy in onlyl0 iterations and i97% cor-

ularization 'E_Eq' (5) prcr)]\_ndes tfhe I|;n|t ?f the abov_z modjfh|e rect at30. However, the process becomes substantially slower
ResNet architecture. This profound relation provides ahov afterwards, which suggests a multi-stage procedure totboos

approach for analyzing deep networks, which is deferred tBerformance. Using adaptive step size with line search show

[15]. a slightly degraded (higher than= 6) performance, but dra-
matically decreases the convergence rate.
5. NUMERICAL RESULTS

As a preliminary validation, we examine geometric regular-

ization on the MNIST handwritten digits database including

50,000 28 x 28 black and white images of handwritten dig- 6. CONCLUSION

its for training andL0, 000 more for testing [16, 17]. We note

that state-of-the-arttechniques already achieve anacgas We proposed a supervised learning technique, which en-

high as99.7%, thus justifying our validation study merely as joys many common properties with deep learning, such as

a proof of concept. We use a single fixed functjoitz) = x.  successive application of linear and non-linear operatoos

In all experiments, we sety, = 5 = 0.98 and leta; vary. mentum method of implementation and convolutional layers.
We have performed extensive numerical studies with difin contrast to deep learning, our method abandons the need

ferent strategies (fixed or variable, ¢, different step size se- for back propagation to hence improve the computational

lection methods and convolutional/plain layers), but calyo burden. Our method is semi-parametric as it essentially ex-

focus on some key results due to space limitation. A morgloits a large number of weight parameters, yet avoiding

comprehensive comparison between these strategies is algeer-parametrization. Another advantage of our technigue

insightful [15]. A summary of the best achieved performancethat it can theoretically be analyzed by tools in differahti

is listed in Figure 2, where plain (non-convolutional) &er geometry as briefly discussed earlier. A conprehensiveldeve

tions are applied with fixed step size= 0.06 anda; = 0.99,  opmentis in [15]. The performance on the data sets we have

d = 400 and fixedD, c. The convolutional iterations also thus far achieved, promises a great and unexplored pdtentia

include 2-D convolutional (Toeplitz) matrices with window waiting to be unveiled.
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