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ABSTRACT

Parametric approaches to Learning, such as deep learning
(DL), are highly popular in nonlinear regression, in spite
of their extremely difficult training with their increasing
complexity (e.g. number of layers in DL). In this paper,
we present an alternative semi-parametric framework which
foregoes the ordinarily required feedback, by introducingthe
novel idea of geometric regularization. We show that certain
deep learning techniques such as residual network (ResNet)
architecture are closely related to our approach. Hence, our
technique can be used to analyze these types of deep learn-
ing. Moreover, we present preliminary results which confirm
that our approach can be easily trained to obtain complex
structures.

Index Terms— supervised learning, back propagation,
geometric approaches

1. INTRODUCTION

Learning a nonlinear function through a finite number of
input-output observations is a fundamental problem of super-
vised machine learning, and has wide applications in science
and engineering. From a statistical vantage point, this prob-
lem entails a regression procedure which, depending on the
nature of the underlying function, may be linear or nonlinear.
In the past few decades, there has been a flurry of advances in
the area of nonlinear regression [1]. Deep learning is perhaps
one of the most well-known approaches with a promising and
remarkable performance in great many applications.

Deep learning has a number of distinctive advantages: 1.
It relies on a parametric description of functions that are eas-
ily computable. Once the parameters (weights) of a deep net-
work are set, the output can be rapidly computed in a feed
forward fashion by a few iterations of affine and elementwise
nonlinear operations; 2. it can avoid over-parametrization by
adjusting the architecture (number of parameters) of the net-
work, hence providing control over the generalization power
of deep learning. Finally, deep networks have been observed
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to be highly flexible in expressing complex and highly non-
linear functions [2, 3]. There are, however, a number of chal-
lenges associated with deep learning, chief among them is that
of obtaining the exact assessment of their expressive power
which remains to this day, an open problem. An important
exception is the single-layer network for which the so called
universal approximation property (UAP) has been established
for some time[4, 5], and which is clearly a highly desirable
property. Another practical difficulty with deep learning is
that the output becomes unproportionally sensitive to the pa-
rameters of different layers, making it, from an optimization
perspective, extremely difficult to train [6]. A recent solution
is the so-called residual network (ResNet) learning, whichin-
troduces bridging branches to the conventional deep learning
architecture [7]. In this paper, we address the above issuesby
proposing a different perspective on learning with a substan-
tially different architecture, which totally forgoes any feed-
back. Specifically, we propose an interative foward projec-
tion in lieu of back propagation to update parameters. As
such, this may rapidly yield an over-parametrized system, we
restrict each layer to perform an ”incremental” update on the
data, as approximately captured by the realization of a dif-
ferential equation, we refer to as geometric regularization, as
discussed in Section 2.1. The formulation of this geometric
regularization allows us to tie the analysis of deep networks
to differential geometry. The study in [8] notices this relation,
but adopts a different approach. In particular, we conjecture
a converse of the celebrated Frobenius integrability theorem,
which potentially proves a universal approximation property
for a family of modified deep ResNets. We also present pre-
liminary results in Section 5, and show that foregoing back
propagation in a neural network does not greatly limit the ex-
pressive power of deep networks, and in fact potentially de-
creases their training effort, dramatically.
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2. MMSE ESTIMATION BY GEOMETRIC
REGULARIZATION

For the sake of generality, we consider aC1 Banach man-
ifold1 F of functionsf : R

n → R
m, wheren,m are the

dimensions of the data and label vectors, respectively, and
each elementf ∈ F represents a candidate model between
the data and the labels. The arbitrary choice ofF allows one
to impose structural properties on the models. Due to space
limitation and for clarity sake, we just focus on the simpler
case ofF = L2, i.e. the space of square integrable functions,
and defer further generalizations to a later publication. More-
over, consider a probability space(Ω,Σ, µ), and two random
vectorsx : Ω → R

n andy : Ω → R
m representing sta-

tistical information about the data. As samples(xt,yt) for
t = 1, 2, . . . , T of x,y are often provided, in which case their
empirical distribution is used.

We consider the supervised learning problem by minimiz-
ing the following mean square error (MSE),

L(f) = E
[

‖f(x)− y‖22
]

, (1)

where E[. ] denotes expectation. For observed samples
(xt,yt), this criterion simplifies to

min
f∈F

1

T

T
∑

t=1

‖f(xt)− yt‖
2
2. (2)

In practice, the statistical assumptions in Eq. (2) are highly
underdetermined and minimization of MSE (MMSE) leads to
undesired solutions. To cope with this, additional constraints
are considered to tame the problem by way of regulariza-
tion. For example the setF can be restricted to a (finite-
dimensional) smooth sub-manifold. This is an implicit fact
in parametric approaches, such as deep neural networks.

2.1. Geometric Regularization

We introduce a more general type of regularization, which
also includes parametric restriction. Our generalizationis in-
spired by the observation that standard (smooth) optimization
techniques such as gradient descent, are based on a realization
of a differential equation of the following form,

dfτ
dτ

= φ(fτ ), (3)

whereφ(f) ∈ Tf is a tangent vector ofF atf . The resulting
solution is typically in an iterative form, as follows,

ft+1 = ft + µtφ(ft), (4)

whereµt is the step size at iterationt = 0, 1, 2, . . .. The
tangent vectorφ(fτ ) is often selected as a descent direction,
where according to Eq. (1), dL/dτ < 0.

1A Banach manifold is an infinite-dimensional generalization of a con-
ventional differentiable manifold [9].

For geometric regularization, we restrict the choice of the
tangent vector to a closed coneCf ⊆ Tf in the tangent space.
In the case of function estimation, whereF and hence the
tangent spaceTf , is infinite dimensional, we adopt a para-
metric definition ofCf by restricting the tangent vector to a
finite dimensional space. However, this might not restrict the
function to a finite dimensional submanifold. A particularly
important case, where geometric regularization simplifiesto
a parametric (finite dimensional) manifold restriction is given
by the Frobenius integrability theorem [10, 11]:

Theorem 1 (Frobenius theorem)Suppose thatCf is ann-
dimensional linear subspace ofTf . For any choice ofφ(f) ∈
Cf , the solution of Eq. (3) remains on ann-dimensional sub-
manifold ofF only, depending on the initial pointf0, iff Cf

is involutive, i.e. for any two vector fieldsφ(f), ψ(f) in Cf

we have that
[φ(f), ψ(f)] ∈ Cf ,

where[. , . ] denotes a Lie bracket [11].

A simple example of an involutive regularization is when

Cf =

{

W0f +

r
∑

k=1

Wkf
k + b |Wk ∈ R

m×m, b ∈ R
m

}

wherefk are fixed functions. It is clear that the solutionft
remains inCf0 from an initial f0. Hence, this case corre-
sponds to a linear regression. Selecting a nonlinear function
g : R→ R, we can write a more general form of the geomet-
ric regularization discussed here, as follows,

Cf =
{

Γ(f)

[

W0f +
r
∑

k=1

Wkf
k + b

]

|Wk ∈ R
d×dk , b ∈ R

d

}

,(5)

where fk are arbitrary fixed functions andΓ(a) for a =
(a1, a2, . . . , ad) ∈ R

d is a diagonal matrix with diagonals
Γii = dg/dx(ai).

3. ALGORITHMIC SOLUTION

The solution to the differential equation in Eq. (3) with the
geometric regularization in Eq. (5) requires a specification of
the tangent vectorsφ(f) ∈ Cf . To preserve a good control
on the computations, and much like for the DNN architecture,
we definef : Rn → R

d, where the reduced dimensiond < n
is a design parameter. Then, the desired function is calculated
asDfτ + c whereD ∈ R

m×d andc ∈ R
m are fixed. Letting

f0(x) = Ux whereU ∈ R
d×n is a constant dimensionality

reduction matrix, we rewrite the MSE objective in Eq. (1) as

L(f) = E

[

‖y −Df(x)− c‖
2

2

]

.

We subsequently apply the steepest descent principle to yield
the following optimization:

φf = arg min
φ∈Cf |‖φ‖2≤1

dL
dτ
. (6)
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We next observe that under mild assumptions,

dL
dτ

= −E

[〈

z , DΓ(f)

[

W0f +

r
∑

k=1

Wkf
k + b

]〉]

,

wherez = y −Df(x) − c andW0,Wk, b are to be decided
based on the optimization in Eq. (6). After some manipula-
tions, this leads to

φf = Γ(f)

[

W0,ff +

r
∑

k=1

Wk,ff
k + bf

]

,

where

W0,f = E
[

Γ(f(x))DT
zfT (x)

]

,

Wk,f = E

[

Γ(f(x))DT
z

(

fk
)T

(x)
]

, k = 1, 2, . . . ,

bf = E
[

Γ(f(x))DT
z

]

(7)

are specialized values ofW0,Wk, b, respectively.

3.1. Initialization

An efficient execution of the above procedure requires us to
judiciously select the parametersU,D, c. We selectU as
the collection of basis vectors of the firstd principal com-
ponents ofx, i.e. U = PT

1 whereE[xxT ] = PΣPT is the
Eigen-representation (SVD) of the correlation matrix,P =
[p1 p2 . . . pn] andP1 = [p1 p2 . . . pd]. The matricesU, c are
selected by minimizing the MSE objective withf = f0. This
yields,

D = E
[

yfT
0 (x)

]

E
[

f0(x)f
T
0 (x)

]−1
,

c = E [y]−DE [f0(x)] .

This also affords us to update these matrices in the course of
the optimization,

D ← E
[

yfT
t (x)

]

E
[

ft(x)f
T
t (x)

]−1
,

c← E [y]−DE [ft(x)] .

3.2. Momentum Method

Momentum methods are popular in machine learning and lead
to considerable improvement in both performance and con-
vergence speed [12, 13]. Since the originally formulated do
not conform to our geometric regularization framework, we
proposed an alternative approach to effectively mix the learn-
ing directionφf at each iteration with its preceding iterates
to better control any associated rapid changes over iterations
(low-pass filtering). Here to keep the geometric regularization
structure, we instead mix the parametersWk, b. This leads to
the following modification in the original algorithm in Eq. (4):

ft+1 = ft + µtΓ(f)

[

V0,tft +
r
∑

k=1

Vk,tf
k + et

]

,

Vk,t+1 = αkVk,t +Wk,ft , k = 0, 1, . . . , r,

et+1 = βet + bft , (8)

whereWk,ft , bft are given in Eq. (7).

3.3. Learning Parameter Selection

To select the remaining parametersαk, β andµt, we manually
tune parametersαk, β, specifically utilize two strategies when
tuningµt: a) fixing µt = µ and b) using line search. The
second method, we obtain by simple computations as

µt =
E[zTt Dψt]

E[‖Dψt‖22]
,

wherezt = y −Dft(x)− c, and

ψt = Γ(ft)

[

V0,tft +

r
∑

k=1

Vk,tf
k + et

]

.

3.4. Incorporating Shift Invariance

In the context of deep learning, especially for image process-
ing, convolutional networks are popular. They differ from the
regular deep networks in attempting to induce shift invariance
in the linear operations of some layers, by way of convolution
(Toeplitz matrix). We may adopt the same strategy in geo-
metric regularization by further assuming thatW0 in Eq. (5)
represents a convolution. We skip the derivations, for not only
space limitation reasons, but also for their similarity to those
leading to Eq. (7). The resulting algorithm with the momen-
tum method is similar to Eq. (8) whereW0,f is replaced by
Wconv,f , defined as

Wconv,f = argmax
W
〈W,W0,f 〉,

where the optimization is over unit-norm convolution (Toeplitz)
matrices. It turns out that since Toeplitz matrices form a vec-
tor space,Wconv,f is a linear function ofW0,f and can be
quickly calculated [14]. Due to space limitation, we defer the
details to [15].

4. THEORETICAL DISCUSSION

4.1. Relation to Deep Residual Networks

The proposed geometric regularization for nonlinear regres-
sion in Eq. (5) is inspired by the advances in the field of neural
networks and deep learning. Recall that a generic deep artifi-
cial neural network (DNN) represents a sequence of functions
(hidden layers)f0(x), f1(x), . . . , fT (x) wheref0(x) = x
andft for t = 0, 1, 2, . . ., is dt-dimensional, wheredt is the
network width in thetth layer. The relation of these func-
tions is plotted in Figure 1 (a). The so-called residual net-
work (ResNet) architecture modifies DNNs by introducing
bridging branches (edges) as shown by Figure 1 (b). We ob-
serve that the geometric regularization in Eq. (5) corresponds
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(b)

(c)

(a)

Fig. 1. Schematic scheme of a single layer in a)ANN
b)ResNet and c)modified ResNet Architectures.

Method Performance
plain iterations 97.4%

convolutional iterations 98.0%
2-stage learning 98.7%

Fig. 2. Performance of different learning strategies

to a modified version of ResNets, as depicted in Figure 1 (c),
which can be written as

ft+1 = g(Wtft + bt)− g(ft) + ft. (9)

More concretely, whenWt, bt are respectively near identity
and near zero, i.e.Wt = I+ǫW̄t andbt = ǫb̄t for small values
of ǫ, we observe by Taylor expansion of Eq. (9) with respect to
ǫ that the differential equation in Eq. (3) with geometric reg-
ularization in Eq. (5) provides the limit of the above modified
ResNet architecture. This profound relation provides a novel
approach for analyzing deep networks, which is deferred to
[15].

5. NUMERICAL RESULTS

As a preliminary validation, we examine geometric regular-
ization on the MNIST handwritten digits database including
50, 000 28 × 28 black and white images of handwritten dig-
its for training and10, 000 more for testing [16, 17]. We note
that state-of-the-art techniques already achieve an accuracy as
high as99.7%, thus justifying our validation study merely as
a proof of concept. We use a single fixed functionf1(x) = x.
In all experiments, we setα0 = β = 0.98 and letα1 vary.

We have performed extensive numerical studies with dif-
ferent strategies (fixed or variableD, c, different step size se-
lection methods and convolutional/plain layers), but can only
focus on some key results due to space limitation. A more
comprehensive comparison between these strategies is also
insightful [15]. A summary of the best achieved performances
is listed in Figure 2, where plain (non-convolutional) itera-
tions are applied with fixed step sizeµ = 0.06 andα1 = 0.99,
d = 400 and fixedD, c. The convolutional iterations also
include 2-D convolutional (Toeplitz) matrices with window

Fig. 3. Performance of different step size selection strategies.

length 5, fixed step sizeµ = 1 andα1 = 0.95, andD, c
updated at each iteration. We also consider a 2-stage proce-
dure, where in the first50 iterations, convolutional matrices
are considered, and plain iterations are subsequently applied.
In both stages, the step size is fixed toµ = 3 andα = 0.95,
while the matricesD, c are updated at each iteration.

Figure 3 compares different strategies for step size se-
lection with convolutional iterations by their associatedper-
formance, i.e. the fraction of correctly classified images in
different iterations. The best asymptotic performance is ob-
tained by fixingµ = 1. Faster convergence may be obtained
by larger step sizes at the expense of a decreased asymp-
totic performance. For example forµ = 6, the algorithms
reaches96% accuracy in only10 iterations and is97% cor-
rect at30. However, the process becomes substantially slower
afterwards, which suggests a multi-stage procedure to boost
performance. Using adaptive step size with line search shows
a slightly degraded (higher thanµ = 6) performance, but dra-
matically decreases the convergence rate.

6. CONCLUSION

We proposed a supervised learning technique, which en-
joys many common properties with deep learning, such as
successive application of linear and non-linear operators, mo-
mentum method of implementation and convolutional layers.
In contrast to deep learning, our method abandons the need
for back propagation to hence improve the computational
burden. Our method is semi-parametric as it essentially ex-
ploits a large number of weight parameters, yet avoiding
over-parametrization. Another advantage of our techniqueis
that it can theoretically be analyzed by tools in differential
geometry as briefly discussed earlier. A conprehensive devel-
opment is in [15]. The performance on the data sets we have
thus far achieved, promises a great and unexplored potential
waiting to be unveiled.
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