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ABSTRACT

In the last years, Graph Convolutional Neural Networks
gained popularity in the Machine Learning community for
their capability of extracting local compositional features
on signals defined on non-Euclidean domains. Shape cor-
respondence, document classification, molecular properties
predictions are just few of the many different problems where
these techniques have been successfully applied. In this paper
we will present Deep Geometric Matrix Completion, a recent
application of Graph Convolutional Neural Networks to the
matrix completion problem. We will illustrate MGCNN
(a multi-graph CNN able to deal with signals defined over
multiple domains) and we will show how coupling such
technique with a RNN, a learnable diffusion process can be
realized for reconstructing the desired information. Extensive
experimental evaluation shows how Geometric Deep Learn-
ing techniques allow to outperform previous state of the art
solutions on the matrix completion problem.

Index Terms— Geometric Deep Learning, Graph Convo-
lutional Neural Networks, Matrix Completion, Recommender
Systems.

1. INTRODUCTION

Convolutional Neural Networks [9, 10, 11, 12, 13] probably
represent the most successful example of Deep Learning tech-
niques nowadays. Thanks to their particular structure, CNNs
allow to extract, with just a handful of parameters, local, com-
positional and invariant features from the signals given in in-
put. This provides a natural way for realizing powerful mod-
els with extremely contained complexities wrt fully connected
solutions (i.e. less subjected to overfitting and with better gen-
eralization capabilities). Despite the success Convolutional
Neural Networks achieved in the last decade, these particular
techniques have mainly been applied, until recent years, only
to signals defined on Euclidean domains (i.e. grids). How-
ever, in a multitude of different fields (e.g. Biology, Com-
puter Graphics and Social Science), one may have to deal
with signals defined on non-Euclidean domains (i.e. graphs
and manifolds). Unfortunately, convolution (namely the fun-
damental operation CNNs relies on) appears undefined on

non-Euclidean domains. In order to extend CNNs to non-
Euclidean structured data, in the last years several different
researchers proposed possible generalized versions of convo-
lution able to deal with signals defined over non-Euclidean
domains [2,3,4,5,14,15,16,17,18]. This trend falls under the
name of Geometric Deep Learning [19] and will represent one
of the main topics of this particular paper.

1.1. GDL and Recommender Systems

Recovering missing information from very few measurements
represents a pivotal problem for modern Recommender Sys-
tems. Products on Amazon, movies on Netflix or sound-
tracks on Spotify can be recommended just by reconstructing
the missing entries of a sparse score matrix. In the years, sev-
eral different researchers casted the matrix completion prob-
lem as a minimization task [20, 21, 22, 23, 24]. Matrix rank
[20] and smoothness of rows/columns [21] over graphs where
users and items are defined, represent in this sense popular
constraints for achieving successful reconstructions. Despite
the nice results mimization approaches achieved along the
years, such techniques do not fully exploit the local stationar-
ity structures that users/items present in corresponding graphs
and the number of parameters to learn is at least linear w.r.t.
the number of users and items. In 2017, Monti et al. intro-
duced RMGCNN, the first Graph Convolutional Neural Net-
work able to operate on the users and items graphs for recov-
ering missing information. Such approach appears as the first
attempt of applying GDL techniques to the matrix completion
problem and currently represents the most prominent example
of Deep Geometric Matrix Completion solutions [1,18,31]. In
this paper we will revise RMGCNN. In Section 2 we will re-
view classic matrix completion approaches. In Section 3 we
will give the basics of Geometric Deep Learning and signal
processing on graphs. In Section 4 we will show how GDL
techniques can be applied to the matrix completion problem.
In Section 5 we will finally draw conclusions.

2. MATRIX COMPLETION

The recommendation problem can be casted as a matrix com-
pletion task. Given a sparse matrix X where rows are items,
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columns are users and entries relevance scores, the goal is to
fill in the rest and thus predict the importance that each sin-
gle item presents for every possible user. Unfortunately, such
problem appears ill-posed without any further constraint. A
well-posed version of the matrix completion problem consists
in assuming matrix X as low-rank. Given a set Ω of known
entries, whose values are represented as yij ∈ Y, a recon-
struction of X can be obtained as:

arg min
X

rank(X) s.t. xij = yij , ∀ij ∈ Ω. (1)

Unfortunately, solving such problem turns out to be NP-
hard, making thus impossible to reconstruct the missing in-
formation in most practical cases. In an attempt to reduce the
computational complexity, in 2009 Candès & Recht [20] pro-
posed to deal with the tightest possible relaxation of the rank
operator. Namely, the nuclear norm. Valuable reconstructions
of X can thus be obtained as:

arg min
X

‖X‖? +
µ

2
‖Ω ◦ (X−Y)‖2F; (2)

the equality constraint is replaced with a penalty to make
the problem robust to noise (here Ω is the indicator matrix
of the known entries Ω and ◦ denotes the Hadamard prod-
uct). Cands and Recht [6] proved that any low-rank matrix
can be perfectly recovered by (2), if a sufficient amount of
(uniformly sampled) entries are provided.

2.1. Geometric Matrix Completion

Despite the mathematically sound approach proposed by
Candès, the solution depicted in [20] ignores any kind of
relationship that may exist among different users or items.
A situation which appears extremely common in modern
recommender systems [21,22,23,24,25]. In an attempt to in-
clude such information in the minimization problem, in 2014
Kalofolias et al. [21] proposed to reconstruct the missing
information of X by solving:

arg min
X

‖X‖2Gr + ‖X‖2Gc +
µ

2
‖Ω ◦ (X−Y)‖2F. (3)

Here Gr/Gc denotes a row/column similarity graph con-
necting items/users with similar profiles. Gc = (Vc, Ec, Wc)
with vertex set Vc = {1, . . . , n}, edge set Ec and adjacency
matrix Wc = (wc

ij); wc
ij = wc

ji, w
c
ij = 0 if (i, j) /∈ Ec

and wc
ij > 0 if (i, j) ∈ Ec. ‖X‖2Gc corresponds to the stan-

dard Dirichlet energy, ‖X‖2Gc = trace(X>∆cX), where ∆c

is the graph laplacian; ∆c = I − D
−1/2
c WcD

−1/2
c , with

Dc = diag(
∑

j 6=i w
c
ij). The same states similarly for item

graph Gr.
The main intuition is to impose smoothness over the com-

munity structure that implicitly people/items with similar
tastes/features form inside similarity graphs. A result which
is obtained by means of penalties ‖X‖Gr , ‖X‖Gc .

2.2. Factorized Models

In general recommender systems, one may have to deal with
an enormous amount of items or customers (e.g. Netflix,
Amazon. . . ). In order to reduce the computational complex-
ity and thus achieve efficient reconstructions, factorized rep-
resentations appeared on the scene in recent years [22,23, 25,
26, 27, 28]. The main idea is to decompose matrix X as the
product of two low-dimensional matrices W and H, respec-
tively containing the features describing items and customers.
In formula, X = WH>. Such representation appears partic-
ular attractive, since it allows to reduce the number of features
to learn from O(n · m) to O(n + m). The reduced model
complexity allows in addition to reduce overfitting, improv-
ing the quality of the reconstructed entries (see [22] in Table
2). Problems (2) and (3) boil down to:

arg min
W,H

1

2
‖W‖2F +

1

2
‖H‖2F +

µ

2
‖Ω ◦ (WH> −Y)‖2F, (4)

arg min
W,H

1

2
‖W‖2Gr +

1

2
‖H‖2Gc +

µ

2
‖Ω ◦ (WH> −Y)‖2F. (5)

3. GEOMETRIC DEEP LEARNING

Graph Convolutional Neural Networks are rapidly becom-
ing popular solutions for solving prediction tasks on non-
Euclidean structured data [2, 3, 5, 14, 15, 16, 17, 18]. Due
to space limitations, in this section we will focus on spec-
tral Graph Convolutional Neural Networks, which represent
valuable solutions for signals defined over a single domain.

Given a generic graph G defined by adjacency matrix W
and given ∆ = D −W = ΦΛΦ> the corresponding graph
laplacian, we can define convolution in the spectral domain as
x ? y = Φ(Φ>x) · (Φ>y) = Φ(x̂ · ŷ). The eigenfunctions
Φ of the graph laplacian play in this case the role of Fourier
atoms (thus Φ>x correspond to a Graph Fourier Transform)
and the corresponding eigenvalues Λ represent frequencies
(the smoother φi the smaller λi, with λi ≥ 0 ∀ i).

Bruna et al. [14] exploited this formulation for defining
graph convolutional layers in the form:

x̃l = ξ

 q′∑
l′=1

ΦŶll′Φ
>xl′

 , l = 1, . . . , q, (6)

where q′, q denote the number of input and output channels,
Ŷll′ = diag(ŷll′,1, . . . , ŷll′,n) is a diagonal matrix of spectral
multipliers and ξ is a nonlinearity (e.g. ReLU). Unfortunately,
this particular formulation requires a number of parameters
which is linear wrt the number of vertices n available in the
given graph, doesn’t admit efficient computations (since it re-
quires projections of input signals xl′ over dense matrix Φ)
and doesn’t guarantee localized filters over the given domain.
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Fig. 1. Eigenvalues of the unnormalized Laplacian h∆ of a 15-communities graph mapped by means of Cayley transform with
spectral zoom values (left-to-right) h = 0.1, 1, and 10. The first 15 frequencies carrying most of the information about the
communities are marked in red. Note how the distance between corresponding eigenvalues changes for different values of h.

In order to contain the amount of parameters and guaran-
tee, at least in some sense, localized filters, in [14] Bruna
et al. (and in a follow-up work Henaff et al. [15]) ar-
gued that local filters can be achieved by means of smooth
spectral transfer functions. The spectral multipliers are de-
fined in this case as ŷk = τ(λk) =

∑p
j=1 θjβj(λk), where

θ = (θ1, θ2, . . . , θp) correspond to the parameters to learn
and β = (β1(λ), β2(λ), . . . , βp(λ)) is just a set of interpola-
tion kernels. The computational complexity of such method
unfortunately remains a O(n2).

In 2016, Defferrard et al. proposed to exploit Cheby-
shev polynomials for reducing the computational complexity
of spectral GCNs [16]. Defining filters as polynomials ap-
plied over the eigenvalues of the graph laplacian, it is possible
indeed to avoid any eigendecomposition and realize convolu-
tion by means of efficient sparse routines (the computational
complexity drops in this way from O(n2) to O(p · |E|)). Con-
volution with Chebyshev polynomials can be obtained as:

x̃ = Φ

p∑
j=0

θjTj(λ̃)Φ>x =

p∑
j=0

θjTj(∆̃)x, (7)

where λ̃ is a frequency rescaled in [−1, 1], θ is the (p+1)-
dimensional vector of polynomial coefficients parametrizing
the filter and Tj(λ) = 2λTj−1(λ) − Tj−2(λ) denotes the
Chebyshev polynomial of degree j (T1(λ) = λ and T0(λ) =
1). Here, ∆̃ = 2λ−1n ∆ − I is the rescaled Laplacian with
eigenvalues Λ̃ = 2λ−1n Λ− I in the interval [−1, 1].

Despite the efficiency presented by ChebNet [16], the ap-
proach proposed by Defferrard et al. struggles at dealing
with graphs presenting contracted spectrums e.g. commu-
nity graphs [18] . An alternative solution is thus represented
by CayleyNet [18]. The main idea behind CayleyNet is to
achieve some sort of spectral zoom property by means of
Cayley transform. Applying the Cayley transform to rescaled
eigenvalues of the graph laplacian ∆ (i.e. C(hλ) = (hλ −
i)(hλ + i)−1) results indeed in a non-linear transformation
of the eigenvalues (Figure 1). This provides a natural way
for zooming on some specific frequencies, which may be the
most relevant for the considered classification task. Convolu-
tion with Cayley filters can be obtained as:

x̃ = c0 + 2Re
{ p∑

j=1

cjC(h∆)j
}

x, (8)

where c = (c1, c2, . . . , cp) is a set of complex coefficients
and C(h∆) = (h∆ − iI)(h∆ + iI)−1. Matrix inversion
can be avoided recursively rewriting the projections of signal
x over the powers of the transformed laplacian and approx-
imately solving the obtained linear systems of equations by
means of Jacobi method [18] (the final computational com-
plexity is a O(K · p · |E|), where K is the number of Jacobi
iterations).

4. DEEP GEOMETRIC MATRIX COMPLETION

4.1. Multigraph Convolutions

Following what proposed by Kalofolias et al. [21] (and sub-
sequently in [22, 25]), it’s easy to observe how better matrix
completions can be achieved by considering the sparse matrix
X as defined over two different graphs: a user graph and an
item graph. From a signal processing point of view, matrix X
can be considered as a bi-dimensional signal defined over two
distinct domains. In order to apply GCNs to this particular
situation, an extension of the aforementioned Graph Fourier
Transform needs to be introduced for signals defined over
multiple graphs. Recalling that a 2D Fourier transform can
be achieved by applying two independent mono-dimensional
Fourier transforms on the rows and columns of the provided
matrix, a multi-grah Fourier trasform can be obtained as:
X̂ = Φ>r XΦc; where Φc,Φr denote the n × n and m ×m
eigenvector matrices of the column- and row-graph Lapla-
cians ∆c,∆r. Defining a multi-graph convolution is then
straightforward, given the spectrum X̂ of the provided matrix
X, a multi-graph convolution can be obtained just by means
of an element-wise multiplication with some set of spectral
multipliers: X ? Y = Φr(X̂ ◦ Ŷ)Φ>c . Following what
presented in [16, 18], in order to realize efficient multi-graph
convolutions, Monti et al. [1] proposed to parametrize the
spectral multipliers as the product of two independent Cheby-
shev polynomials: τΘ(λ̃c, λ̃r) =

∑p
j,j′=0 θjj′Tj(λ̃c)Tj′(λ̃r).

Heavy eigendecompositions and projections over the eigen-
functions of the graph laplacians are thus avoided.

4.2. Separable Convolutions

Despite the nice idea illustrated in the previous subsection,
the approach outlined in 4.1 requires a O(n · m) number
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Fig. 2. Recurrent GCNN (RGCNN) architecture using the multi-graph (left) and separable (right) multi-graph convolution. The
number of parameters to learn is O(1) and the learning complexity is respectively O(n ·m) and O(n+m).

of operations. This makes difficult to apply such solution
to really large and huge graphs (e.g. in the famous Net-
flix challenge [27] people had to deal with a matrix rep-
resenting 480k movies and 18k users i.e. 8.5B entries in
total). A solution to the problem is represented by fac-
torized approaches [1, 18]. Instead of recurring to multi-
graph convolutions realized over the entire matrix X, two
independent single-graph GCNs can be applied on matrices
W and H: w̃l = ξ

(∑q′

l′=1

∑p
j=0 θ

r
j,ll′Tj(∆̃r)wl′

)
, h̃l =

ξ
(∑q′

l′=1

∑p
j′=0 θ

c
j′,ll′Tj′(∆̃c)hl′

)
. This allows to reduce

the amount of operations to O(n + m), giving the possi-
bility to scale the presented architecture to extremely large
matrices.

4.3. Matrix completion as a diffusion process

Given the aforementioned multi-graph convolutional layers,
the last step that remains concerns the choice of the architec-
ture to use for reconstructing the missing information. In [1]
the authors proposed to model matrix completion as a diffu-
sion process by means of a RNN casted on top of the afore-
mentioned GCNs (Figure 2). Every (user, item) pair in the
multi-graph approach and every user/item in the separable
one present in this case an independent state, which is up-
dated (at every step) by means of the features produced by
the selected GCN. Such state is used for predicting an incre-
mental update dxti,j (dwt

i , dh
t
j for the separable solution) that

is summed to the current value xti,j (wt
i , h

t
j) for reconstructing

the missing entries. Experimental evaluation with Chebyshev
polynomials (order p = 4 and T = 10 diffusion steps) on syn-
thetic datasets shows how this particular solution (RMGCNN)
outperforms deeper MGCNNs on the matrix completion task
(Table 1).

On real datasets, Geometric Deep Learning techniques
consistently outperform classic matrix completion approaches,
achieving state of the art performance on the Movielens
100K, Flixster, Douban and Yahoo Music dataset1 (Table 2).
Architectures based on Cayley polynomials appear in partic-
ular as better solutions, thanks to the spectral zoom properties

1Submatrices of 3000 × 3000 entries have been extracted for Flixster,
Douban and Yahoo Music, in order to reduce the computational complexity.

they present (which allow to handle possible communities
without incurring in excessive polynomial orders).

Table 1. RMSE obtained on a synthetic dataset. The first
hidden layer receiving in input matrix X and producing in
ouput 32 features for each (user, item) pair (i.e. 1MGC32) is
omitted for reasons of space.

Method Params Architecture RMSE
MGCNN3L 9K 32MGC10, 10MGC1 0.0116
MGCNN4L 53K 32MGC32 × 2, 32MGC1 0.0073
MGCNN5L 78K 32MGC32 × 3, 32MGC1 0.0074
MGCNN6L 104K 32MGC32 × 4, 32MGC1 0.0064
RMGCNN 9K LSTM 0.0053

Table 2. Performance (RMSE) of several matrix completion
methods on the MovieLens, Flixster, Douban and Yahoo Mu-
sic datasets.
Method MovieLens Flixster Douban Yahoo
IMC [29, 30] 1.653 – – –
GMC [21] 0.996 – – –
MC [20] 0.973 – – –
GRALS [22] 0.945 1.245 0.833 38.042
sRMGCNNCheby [1] 0.929 0.926 0.801 22.415
sRMGCNNCayley [18] 0.922 – – –

5. CONCLUSIONS

GDL techniques are rapidly becoming popular solutions for
solving all sort of prediction tasks on non-Euclidean struc-
tured data. In this paper we reviewed Deep Geometric Matrix
Completion, a recent application of these techniques to the
matrix completion problem. We showed how spectral Graph
Convolutional Neural Networks can be used to achieve suc-
cessful reconstructions, while keeping at the same time con-
tained computational burdens. Despite the nice performance
achieved, the works here illustrated only represent the first at-
tempts of applying GDL techniques to the recommendation
problem. We believe new approaches will exponentially ap-
pear in the literature (e.g. [31]), showing how GCNs can ef-
fectively be used for further improving the results here pre-
sented.
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