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ABSTRACT
Convolutional sparse coding using the `0,∞ norm has been
described as “a problem that operates locally while thinking
globally”. In this paper, we present a matching pursuit based
greedy algorithm specifically tailored to the `0,∞ norm. We
also propose a corresponding dictionary learning algorithm,
which trains a local dictionary on a set of global images. Our
approach is based on the convolutional relationship between
the local dictionary and the global image. It operates locally
while taking into account the global nature of the images. We
demonstrate the usage of our proposed strategy for the task of
image inpainting.

Index Terms— Convolutional Sparse Coding, Global
modeling, Local Processing, Greedy Algorithms, Sparse
Representations

1. INTRODUCTION

Sparse coding can be described as solving the following min-
imization problem, known as the P ε0 problem:

(P ε0 ) : min
α
‖α‖0 s.t. ‖x− Dα‖22 ≤ ε,

where α ∈ Rp is a sparse representation of a signal x ∈ RN
in the dictionary D ∈ RN×p. The columns of D are referred
to as atoms and are assumed to have unit `2 norm. The `0
(pseudo-)norm returns the number of nonzero coefficients in
a vector, also called the sparsity.

As P ε0 is an NP-hard problem, several approximation ap-
proaches have been proposed. One of them is the greedy ap-
proach, which includes matching pursuit [1], and another one
uses a convex relaxation to the `1 norm [2].

When training a dictionary on a set of vectors {xi}si=1,
one typically solves the minimization problem

min
D,{αi}si=1

s∑
i=1

‖xi − Dαi‖22 s.t. ‖αi‖0 ≤ k , 1 ≤ i ≤ s.

A common approach to solve this problem is repeatedly al-
ternating between optimizing the dictionary with the sparse
representations held fixed, and optimizing the sparse repre-
sentations with the dictionary held fixed.
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1.1. Local Sparse Coding

In practice, dictionaries are only learned on relatively small
signals due to computational complexity, memory require-
ment and the required quantity of training signals. Thus, an
image of size M × N is usually divided into overlapping
patches of size m × n. Sparse coding is performed on each
patch separately with a local dictionary DL ∈ Rmn×p, and
the reconstructed image is taken as the average over the over-
lapping patches. This approach is fundamentally limited as
it applies the sparse model to patches only, and does not take
into account the dependencies between them. While some
methods have been proposed for globalizing the prior [3], [4],
[5], the current dominant solution seeks a shift-invariant dic-
tionary.

1.2. Convolutional Sparse Coding

In order to address these problems, a convolutional approach
has recently been developed [6], [7], [8], [9], demonstrat-
ing state-of-the-art performance in various applications [10],
[11], [12]. A local dictionary DL is used to represent a
global signal by including all shifts of the local atoms:

x = Dα =
p∑
j=1

Djαj =
p∑
j=1

dj ∗ αj , where α is the global

sparse representation vector, Dj is the convolution matrix of
the local atom dj , αj is the vector of the coefficients mul-
tiplying dj at each of its shifts within the global signal, and
D =

[
D1 D2 ... Dp

]
is the global dictionary, also

referred to as the convolutional dictionary (in the case of
two-dimensional signals it is a block-Toeplitz matrix). The
projections of the global signal onto D can be computed effi-
ciently using convolution operations: bj = DTj x =

←→
dj ∗ x,

where
←→
dj is the column-stacked horizontally and vertically

flipped atom dj . Thus, there is no need to store or use the
explicit form of D for matrix multiplication.

With the above formulation, the sparse coding problem
becomes:

min
{αj}

∥∥∥∥∥∥x−
p∑
j=1

dj ∗αj

∥∥∥∥∥∥
2

2

s.t.

p∑
j=1

‖αj‖0 ≤ k . (1)

Greedy solutions to (1) and similar forms have been proposed
in [13], [14], [15], [16], and [17]. They are based on matching
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pursuit or orthogonal matching pursuit, with the projections
computed efficiently as convolutions. However, even with ef-
ficient implementations, the complexity of such a greedy al-
gorithm is prohibitive: O (MNpk). This is especially true for
large global images, where the global sparsity is large. Con-
sequently, all other algorithms surveyed in [18] and [19] use
an `1 relaxation and minimize its unconstrained Lagrangian.

By imposing a constraint on the `0 or `1 norm of a global
image, we can achieve a globally sparse representation while
allowing all possible shifts of the local dictionary. However,
the selected atoms may be concentrated in some areas of the
image, while others may be very sparse. Thus, when using a
convolutional dictionary, the global sparsity alone is a poor in-
dication of error measures of images which take into account
the structure of the whole image.

In addition, previous works [20], [21] have shown that
pursuit algorithms are guaranteed to succeed as long as the
sparsity is lower than a certain threshold. Therefore, a local
pursuit method that is able to succeed in the sparser patches,
which might cover most of the global image, could fail in its
denser patches. Thus, it is tempting to impose a constraint on
sparsity at the local level, while taking into account the global
structure. For this purpose, we need to constrain a norm that
induces sparsity at the local level across the whole global sig-
nal. Such an approach was proposed in [22], which defines
the `0,∞ norm.

1.3. The P ε0,∞ problem

The P ε0,∞ problem is described in [22] as “a problem that
operates locally while thinking globally”:(

P ε0,∞
)

: min
α
‖α‖0,∞ s.t. ‖x− Dα‖22 ≤ ε. (2)

Recall that the global dictionary D is a concatenation of the
convolution matrices of the local atoms of size m × n, zero-
padded to the size of the global image (M ×N ) and column-
stacked. We define a stripe Ωi as a set of (2m− 1)(2n− 1)p
indices of columns in D who may have nonzero values at the
row corresponding to the pixel i (1 ≤ i ≤ MN ). Only
nonzero coefficients of α with these indices contribute to the
pixel xi. The `0,∞ (pseudo-)norm of the vector α, called the
stripe-sparsity and denoted ‖α‖0,∞, is the number of nonzero
coefficients in the densest stripe, or equivalently the maxi-
mum number of atoms contributing to any pixel. By limiting
the sparsity of the densest stripe, we are effectively limiting
the sparsity of all stripes, and therefore the number of over-
laps in all pixels of the global representation.

The work in [22] proposes two optimization algorithms
for solving the `1 relaxed unconstrained version of (2). In
[23], a corresponding dictionary learning algorithm is pro-
posed, which also minimizes an unconstrained penalized La-
grangian. In [24], the `1,∞, which is a convex relaxation of
the `0,∞ norm, is shown to underperform the simple `1 norm
regularization for white Gaussian noise denoising.

1.4. Contribution

Greedy strategies have so far been proposed for solving the
standard convolutional sparse coding problem (1), which as
mentioned above is computationally demanding. In this work,
we propose to overcome this issue by introducing a novel
greedy sparse coding scheme for the `0,∞ norm constrained
minimization problem (2). To the best of our knowledge, all
strategies proposed for this scheme so far have relied on `1 re-
laxation and unconstrained optimization [22], [23]. The con-
volutional sparse recovery scheme proposed in this work has
the following desirable properties: (i) as a greedy algorithm,
it allows direct control over the squared error and the `0,∞
sparsity; (ii) it recovers efficiently multiple sparse representa-
tion coefficients at the scale of the image by projecting onto
the local dictionary only once; (iii) it introduces an MOD-
like dictionary learning approach for a dictionary update step,
separate from the sparse coding step.

An extended version of this paper with another dictionary
learning approach and additional experiments appears in [25].

2. A GLOBAL CONVOLUTIONAL GREEDY
PURSUIT

Recall the standard matching pursuit algorithm: (i) calculate
projections of the signal onto all atoms; (ii) select the one with
the largest absolute value and use the inner product as a co-
efficient; (iii) subtract the projection from the signal, creating
residual vector; and (iv) repeat steps (i)-(iii) for the residual
until a stopping condition is reached.

In the case of the P0,∞ problem, once we select a sin-
gle atom, we might as well add many more atoms until we
can no longer add any more without creating overlaps. After
selecting the atom with the most significant projection, we en-
force the non-overlapping constraint by discarding all atoms
that overlap it (all indices in its stripe, denoted Ωi∗ ). We ex-
clude atoms by zeroing their projections, thus ensuring they
will not be selected. Notice that the selected atoms are ex-
actly the same ones that would have been selected if we had
recomputed the projection onto the dictionary for each added
atom separately. All atoms that remain in the global dictio-
nary are orthogonal to the selected atom, so there is no need
to recalculate the projections. Note also that each atom in-
creases the `0 norm while holding the `0,∞ norm fixed and
reducing the representation error. We define a layer as such a
representation without overlaps.

If the stopping condition has not yet been reached, we add
the next series of atoms, thus increasing the `0,∞ norm by
one. We do this by recomputing the projections of the resid-
ual onto the dictionary (using convolution operations), sorting
them, and constructing an additional layer of non-overlapping
atoms. When there remain no atoms in the dictionary to be se-
lected, we have completed one layer. Then we subtract each
reconstructed layer from the image before calculating the pro-
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jections of the residual onto the convolutional dictionary, and
we repeat until a stopping condition is reached. The result-
ing algorithm is summarized in Algorithm 1, which we call
Global Convolutional Matching Pursuit (GCMP).

Algorithm 1 Global Convolutional Matching Pursuit
α← 0
r← x
k ← 0
while ‖r‖2 > ε do

b←
[ ←→

d1 ∗ r
←→
d2 ∗ r ...

←→
dp ∗ r

]T
while max

i
|bi| > 0 do

i∗ ← arg max
i
|bi|

αi∗ ← αi∗ + bi∗

for i ∈ Ωi∗ do
bi ← 0

end for
end while
r← x−

p∑
j=1

dj ∗αj

k ← k + 1
end while

Note that we compute the projection of the residual onto
the dictionary only once per outer loop, and not per atom.
Consequently, the order of complexity isO

(
MNp ‖α‖0,∞

)
,

which is much lower than the O (MNpk) required by MP.
Moreover, by construction, the resulting solution obeys

MN

2mn

(
‖α‖0,∞ − 1

)
≤ k ≤ MN

mn
‖α‖0,∞ . (3)

3. DICTIONARY LEARNING

We propose a dictionary learning approach, which learns
offline a local dictionary on a training set of global signals
(rather than on patches). Let

{
x(i)
}

be a set of s global sig-
nals and let DL be a local dictionary with p columns {dj}.
Each global signal is represented as a sum of convolutions:

x(i) =

p∑
j=1

dj ∗α(i)
j

The dictionary is trained by optimizing both the sparse
representation and the dictionary:

min
{α(i)},{dj}

s∑
i=1

∥∥∥∥∥∥x(i) −
p∑
j=1

dj ∗α(i)
j

∥∥∥∥∥∥
2

2

s.t.
∥∥∥α(i)

∥∥∥
0,∞
≤ K, 1 ≤ i ≤ s,

(4)

where α(i) is a vector formed by vertically stacking α
(i)
j for

all j. To solve (4), we repeatedly alternate between a sparse
coding step with a constraint on the `0,∞ norm, and a dic-
tionary update step. The sparse coding problem is solved by
using GCMP (Algorithm 1) for each of the s global images
separately. The dictionary update step minimizes the sum of
total squared representation errors for the whole dictionary:

min
{dj}

s∑
i=1

∥∥∥∥∥∥x(i) −
p∑
j=1

dj ∗α(i)
j

∥∥∥∥∥∥
2

2

. (5)

The convolution operation can be written as a matrix multipli-
cation, where one of the operands is converted into a matrix,
and we may write (5), as:

min
{di}

s∑
i=1

∥∥∥∥∥∥x(i) −
p∑
j=1

A(i)
j dj

∥∥∥∥∥∥
2

2

. (6)

In (6), A(i)
j is the convolution matrix of α(i)

j . Defining the

matrix A(i) as the horizontal concatenation of A(i)
j for all j

and the vector d as a vertical concatenation of the local dictio-
nary, the inner sum in (6) may be replaced by a single matrix
multiplication and the minimization is over a single vector:

min
d

s∑
i=1

∥∥∥x(i) − A(i)d
∥∥∥2
2
.

Next, we define the matrix X by stacking the training set{
x(i)
}

horizontally, and we define the matrix A by stacking
the matrices A(i) vertically. Then, the sum of squared `2
norms can be rewritten as a single squared Frobenius norm:

min
d
‖X− Ad‖2F . (7)

An analytical solution to (7) is achieved by taking the gradient
and setting it to zero. This leads to the following solution:

d =
(
ATA

)−1
ATX =

(
s∑
i=1

A(i)TA(i)

)−1 s∑
i=1

A(i)T x(i).

Instead of using a direct matrix inversion, which is com-
putationally prohibitive, d can be computed by a variety of
numerical methods. For example, gradient descent methods
only require computations of ATAd and ATX, both of which
can be constructed as convolution operations. We use Conju-
gate Gradient Least Squares (CGLS) with these convolution
operations.

After updating the dictionary, we go back to sparse cod-
ing with the updated dictionary using GCMP. Then, the next
dictionary update occurs using the new A. Thus, a local dic-
tionary is trained on a set of global images and optimized for
solving the P0,∞ problem. This is a convolutional version of
Method of Optimal Directions (MOD) [27].
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Table 1. PSNR of inpainted images
Method Barbara Boat House Lena Peppers Cameraman Couple

Patch based K-SVD [26] 13.33 11.05 10.61 11.96 10.78 10.06 12.07

Heide et al. [9] 11.00 10.29 10.18 11.77 9.41 9.74 11.99

Papayan et al. [23] 11.67 10.33 10.56 11.92 9.18 9.95 12.25
GCMP (our method) 11.94 10.53 10.51 11.99 9.93 10.24 11.61

Fig. 1. Representations of the cameraman image for several
values of ‖α‖0,∞.

4. EXPERIMENTS

4.1. Accuracy vs. Sparsity

To evaluate the effect of the `0,∞ sparsity on the reconstruc-
tion of GCMP, we applied GCMP to the cameraman test im-
age. We used the two-dimensional Haar wavelet dictionary of
size 8× 8 as the local dictionary.

Fig. 1 shows the original image and the reconstructed im-
age for several values of ‖α‖0,∞. For ‖α‖0,∞ = 1 there are
no overlaps, and the selected atoms are mostly the DC atom
and low-frequency atoms. As ‖α‖0,∞ increases, the repre-
sentation becomes more accurate.

4.2. Inpainting

Inpainting is the task of recovering an image from its cor-
rupted version, which has missing pixels. We assume a con-
volutional sparse representation of the corrupted image:

y = Cx = CDα = C
p∑
j=1

dj ∗ αj , where y is the corrupted

image, D is a convolutional dictionary, C, referred to as the
subsampling matrix, is a diagonal binary matrix with cii = 0

for a corrupted pixel i, cii = 1 for an uncorrupted pixel i, and
cij = 0 for i 6= j.

We find the sparse representation of the corrupted image
by solving the P ε0,∞ problem with the global dictionary CD.
The projections of the corrupted image onto CD are the same
as onto D due to C being symmetric and idempotent: b =
DTCTCx = DT y. The only effect C has on Algorithm 1
is when computing the residual, which becomes: r ← y −

C
p∑
j=1

dj ∗αj . After computing the sparse representation of y,

we estimate the original image as: x̂ = Dα =
p∑
j=1

dj ∗αj .

As in [9] and [23], we trained a dictionary of 100 atoms of
size 11× 11 on the Fruit training set, which contains ten im-
ages of fruit. We trained five dictionaries, each constrained to
a different `0,∞ sparsity: 8, 16, 32, 64 and 128. We corrupted
several test images by removing 50% of the pixels from each
image at random. We inpainted the test images using GCMP1,
and averaged the reconstructions from the five dictionaries.
Table 1 compares the PSNR of the inpainted images to the
results reported in [23] (including their results for the method
from [9]) and to the patch-based method from [26], which
uses K-SVD to train on overlapping patches of the corrupted
image. The patch-based method is much slower than the
convolutional methods (the sparse coding step alone requires
O (MNmnpk) operations), and it is an online method (un-
like the other methods we present here, which train an offline
dictionary on the Fruit dataset). Online inpainting using our
method appears in [25] and achieves better performance. We
used PSNR = 20 log

( √
MN

‖x−x̂‖2

)
as defined in [23].

5. CONCLUSION

This work proposes a greedy strategy for the convolutional
sparse coding problem based on the constrained P ε0,∞ prob-
lem. It offers an alternative to the approach in [22] and [23],
which minimizes an unconstrained penalized Lagrangian with
a convex relaxation to the `1 norm. Shifting from the `0
norm to `0,∞ makes the usage of greedy algorithms for con-
volutional sparse coding computationally feasible. We also
propose a dictionary learning method based on P ε0,∞, which
trains a local dictionary on global images. It is useful for
image inpainting with offline pretrained dictionaries, giving
results comparable to [23] and to patch-based methods.

1Code available at http://web.eng.tau.ac.il/~raja
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