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ABSTRACT
In this work, we investigate a recently proposed regularization
technique based on multi-branch architectures, called Shake-
Shake regularization, for the task of speech emotion recog-
nition. In addition, we also propose variants to incorporate
domain knowledge into model configurations. The experi-
mental results demonstrate: 1) independently shaking sub-
bands delivers favorable models compared to shaking the en-
tire spectral-temporal feature maps. 2) with proper patience
in early stopping, the proposed models can simultaneously
outperform the baseline and maintain a smaller performance
gap between training and validation.

Index Terms— Shake-Shake Regularization, Sub-band
Shaking, Adversarial Training, Affective Computing, Speech
Emotion Recognition

1. INTRODUCTION

Deep convolutional neural networks have been successfully
applied to several pattern recognition tasks such as image
recognition [1], machine translation [2] and speech emotion
recognition [3]. Currently, to successfully train a deep neural
network, one needs either a sufficient number of training sam-
ples to implicitly regularize the learning process, or employ
techniques like weight decay and dropout [4] and its variants
to explicitly keep the model from over-fitting.

In the recent years, one of the most popular and successful
architectures is the residual neural network (ResNet) [1]. The
ResNet architecture was designed based on a key assumption
that it is more efficient to optimize the residual term than the
original task mapping. Since then, a great deal of effort in
machine learning and computer vision has been dedicated to
study the multi-branch architecture.

Deep convolutional neural networks have also gained
much attention in the community of affective computing
mainly because of its outstanding ability to formulate dis-
criminative features for the top-layer classifier. Usually the
number of parameters in a model is far more than the number
of training samples and thus it requires heavy regularization to
train deep neural networks for affective computing. However,
since the introduction of batch normalization [5], the gains
obtained by using dropout for regularization have decreased
[5, 6, 7]. Yet, multi-branch architectures have emerged as a
promising alternative.

Regularization techniques based on multi-branch archi-
tectures such as Shakeout [8] and Shake-Shake [9] have de-
livered impressive performances on standard image datasets
such as the CIFAR-10 [10]. In a clever way, both of them
utilize multiple branches to learn different aspects of the rel-
evant information and then a summation in the end follows
for information alignment among branches. Instead of using
multiple branches, a recent work [11] based on a mixture of
experts showed that randomly projecting samples is able to
break the structure of adversarial noise that could easily con-
found the model and as a result mislead the learning process.
Despite not being an end-to-end approach, it shares the same
idea of integrating multiple streams of model-based diversity.

In this work, we study the Shake-Shake regularized
ResNet for speech emotion recognition. In addition to shak-
ing the entire spectral-temporal feature maps with the same
strength, we propose to address different spectral sub-bands
independently based on our hypothesis of the non-uniform
distribution of affective information over the spectral axis.
There has been work on multi-stream framework in speech
processing. For example, Mallidi et al. [12] designed a robust
speech recognition system using multiple streams, each of
them attending to a different part of the feature space, to fight
against noise. However, lacking both multiple branches and
the final information alignment, the design philosophy is fun-
damentally different from that of multi-branch architectures.
In fact, we intend to serve this work as a bridge between the
multi-stream framework and the multi-branch architecture.

1.1. Shake-Shake Regularization
Shake-Shake regularization [9] is a recently proposed tech-
nique to regularize training of deep convolutional neural net-
works for image recognition tasks. This regularization tech-
nique based on multi-branch architectures promotes stochas-
tic mixtures of forward and backward propagations from net-
work branches in order to create a flow of model-based adver-
sarial learning samples/gradients during the training phase.
Owing to it excellent ability to combat over-fitting even in the
presence of batch normalization, the Shake-Shake regularized
3-branch residual neural network [9] has achieved the current
state-of-the-art performance on the CIFAR-10 image dataset.

An overview of a 3-branch shake-shake regularized
ResNet is depicted in Fig. 1. In addition to the short-cut flow
(in light gray), there are other two residual branches B(x),
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Fig. 1. An overview of a 3-branch shake-shake regularized
residual block [9]. (a) Forward propagation during the train-
ing phase (b) Backward propagation during the training phase
(c) Testing phase. The coefficients α and β are sampled from
the uniform distribution over [0, 1] to scale down the forward
and backward flows during the training phase.

each of them consisting of a sequence of layers stacked in or-
der: ConvH×W , Batch Normalization, ReLU, ConvH×W ,
Batch Normalization, where ConvH ×W represents a con-
volutional layer with filters of size H ×W without pooling
and ReLU is the rectified linear unit ReLU(x) = max(0, x).

The Shake-Shake regularization adds to the aggregate
of the output of each branch an additional layer, called the
ShakeShake layer, to randomly generate adversarial flows in
the following way:

ShakeResNetN (X) = X+

N∑
n=1

ShakeShake
(
{Bn(X)}Nn=1

)
where in the forward propagation for a = [α1, · · · , αN ] sam-
pled from the (N−1)-simplex (Fig. 1 (a))

ShakeResNetN (X) = X+

N∑
n=1

αnBn(X),

while in the backward propagation for b = [β1, · · · , βN ]
sampled from the (N−1)-simplex and g the gradient from
the top layer, the gradient entering into Bn(x) is βng (Fig. 1
(b)). At the testing time, the expected model is then evaluated
for inference by taking the expectation of the random sources
in the architecture (Fig. 1 (c)).

In each mini-batch, to apply scaling coefficients α or β
either on the entire mini-batch or on each individual sample
independently can also make a difference [9].

2. PROPOSED MODELS

In addition to batch- or sample-wise shaking, when it comes
to the area of acoustic processing, there is another orthog-
onal dimension to consider: the spectral domain. Leverag-
ing domain knowledge, our proposed models are based on a
simple but plausible hypothesis that affective information is
distributed non-uniformly over the spectral axis [13]. There-
fore, there is no reason to enforce the entire spectral axis to
be shaken with the same strength concurrently. Furthermore,

adversarial noise may exist and extend over the spectral axis.
By deliberately shaking spectral sub-bands independently, the
structure of adversarial noise may be broken and become less
confounding to the model.
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Fig. 2. An illustration for the sub-band definitions.

Before we formally define the proposed models, we in-
troduce the definition of sub-bands first. Fig. 2 depicts the
definition for sub-bands in a 3-branch residual block. Here
we slightly abuse the notations of frequency and time because
after two convolutional layers these axes are not exactly the
same as those of input to the branches; however, since con-
volution is a local operation they still hold the corresponding
spectral and temporal nature. At the output of each branch,
we define the high-frequency half to be the upper sub-band
while the low-frequency half to be the lower sub-band. We
take the middle point on the spectral axis to be the border line
for simplicity. The entire output is called the full band.

Having defined these concepts, we denote X the input to a
residual block, Xi the full band from the i-th branch, Xi

u the
upper sub-band from the i-th branch and Xi

l the lower sub-
band from the i-th branch. Naturally, the relationship between
them is given by Xi =

[
Xi

u|Xi
l

]
. We also denote Y the

output of a Shake-Shake regularized residual block.
To demonstrate that shaking sub-bands can better regular-

ize the learning process, we propose the following models for
benchmarking:

1. Shake the full band (Full)

Y = X+

N∑
n=1

ShakeShake
(
{Xn}Nn=1

)
. (1)

2. Shake the upper sub-band (Upper)

Y = X (2)

+

[
N∑

n=1

ShakeShake
(
{Xn

u}
N
n=1

)∣∣∣∣∣
N∑

n=1

Xn
l

]
.

3. Shake the lower sub-band (Lower)

Y = X (3)

+

[
N∑

n=1

Xn
u

∣∣∣∣∣
N∑

n=1

ShakeShake
(
{Xn

l }
N
n=1

)]
.
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4. Shake both sub-bands but independently (Both)

Y = X+ [Yu|Yl] , (4)

Yu =

N∑
n=1

ShakeShake
(
{Xn

u}
N
n=1

)
,

Yl =

N∑
n=1

ShakeShake
(
{Xn

l }
N
n=1

)
.

3. EXPERIMENTS
3.1. Datasets

We use four publicly available emotion corpora to demon-
strate the effectiveness of the proposed models, including the
Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) [14], the eNTERFACE’05 Audio-Visual
Emotion Database [15], the EMOVO Corpus [16] and the
Surrey Audio-Visual Expressed Emotion (SAVEE) [17]. All
of these corpora are multi-modal in which speech, facial
expression and text all convey a certain degree of affective
information. However, in this paper we solely focus on the
acoustic modality for experiments.

The intersection of emotional classes in these four corpora
consists of joy, anger, sadness and fear. Therefore, we formu-
late the experimental task into a sequence classification of 4
classes. In particular, we employ both speaking and singing
sets from the RAVDESS corpus, all of the eNTERFACE’05,
EMOVO and SAVEE corpora. However, one of the female
actors in RAVDESS corpus does not have the singing part
and we thus leave her speech part out of the experiments as
well. The actor 23 in eNTERFACE’05 has only 3 utterances
portraying joy, which makes the emotional class distribution
slightly imbalanced. As a result, we have 2885 utterances in
total. Table 1 summarizes the information about these four
corpora.

Corpus No. No. Utterances
Actors joy anger sadness fear

RAVDESS 23 368 368 368 368
eNTERFACE 42 207 210 210 210
EMOVO 6 84 84 84 84
SAVEE 4 60 60 60 60

Total 75 719 722 722 722

Table 1. An overview of these selected corpora, including
the number of actors and the distribution of utterances in the
emotional classes.

For the evaluation, we adopt a 4-fold cross validation
strategy. To begin with, we split the actor set into 4 partitions.
Moreover, we impose extra constraints to make sure that
each partition is as gender and corpus uniform as possible.
For example, each actor set partition is randomly distributed
with 2-3 female actors and 8-9 male actors from the eN-
TERFACE’05 corpus. More details are provided in Table
2. By partitioning the actor set, it becomes easier to main-
tain speaker independence between training and validation
throughout all of the experiments.

Corpus Actor Set Partition
1 2 3 4

RAVDESS 3F, 3M 3F, 3M 3F, 3M 2F, 3M
eNTERFACE 2F, 9M 2F, 8M 2F, 8M 3F, 8M
EMOVO 1F, 0M 1F, 1M 1F, 1M 0F, 1M
SAVEE 0F, 1M 0F, 1M 0F, 1M 0F, 1M
Total 6F, 13M 6F, 13M 6F, 13M 5F, 13M

Table 2. F: female, M: male. The gender and corpus distribu-
tions in each actor set partition of the cross validation.

Models Layers No. Params
3-Branch Conv2d(4,2,16) + 1.17 M
ResNet BatchNorm2d + ReLU +

(Shortcut, Branch×2) +
[w/ shake reg. [ShakeShake {×2}+]
{on Both}] ReLU + Mean-Pooling +

Dropout(0.5) +
Linear(256) + ReLU +

Dropout(0.25) +
Linear(256) + ReLU +

Linear(4)
Branch Conv2d(4,2,64) + 10.2 K

BatchNorm2d + ReLU +
Conv2d(4,4,128) +

BatchNorm2d

Table 3. Network architecture, layers and the num-
ber of parameters in the baseline and proposed models.
Conv2d(N,H,W ) stands for a 2D convolutional layer with
N filters of size H ×W and Linear(N) for a fully connected
layer with N nodes. The Mean-Pooling layer represents the
temporal pooling for generating an utterance representation.

3.2. Experimental Setup

To start with, we extract the spectrograms of each utterance
with a 25ms window for every 10ms using the Kaldi [18] li-
brary. Cepstral mean and variance normalization is then ap-
plied on the spectrogram frames per utterance. To equip each
frame with a certain context, we splice it with 10 frames in the
left and 5 frames in the right. Therefore, a resulting spliced
frame has a resolution of 16× 257. Since emotion involves a
longer-term mental state transition, we further down-sample
the frame rate by a factor of 8 to simplify and expedite the
training process.

We establish a baseline of 3-branch ResNet and list the
details in Table 3. For each utterance, a simple mean pool-
ing is taken at the output of the residual block to form an
utterance representation before feeding it to the fully con-
nected layers. We avoid explicit temporal modeling layers
such as a long short-term memory recurrent network because
our focus is on shaking the ResNet. Note that the ShakeShake
layer has no parameter to learn and hence the model size does
not change during this work. We implement the ShakeShake
layer as well as the entire network architecture using the Py-
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Model Patience in Early Stopping
9 11 13 15 17 19 21 26 31 36 41 46 51

Baseline 48.01 48.01 48.57 50.59 51.78 56.03 56.03 56.49 57.66 57.66 57.66 58.85 58.85
Full 47.26 47.26 48.46 52.58 53.23 53.23 53.23 56.24 56.24 56.94 56.94 57.34 57.34

Upper 47.30 48.62 52.66 53.31 54.73 55.26 55.47 56.00 57.50 57.50 57.79 57.79 57.79
Lower 45.62 46.55 47.66 48.04 48.79 48.79 49.21 51.34 51.48 54.18 54.18 54.18 54.18
Both 46.97 49.66 50.72 51.61 54.13 54.13 54.13 54.58 55.08 57.20 57.66 57.79 57.79

Table 4. Averaged unweighted accuracy (%) on the validation partition over 4-fold cross validation.

Model Patience in Early Stopping
9 11 13 15 17 19 21 26 31 36 41 46 51

Baseline -0.14 -0.14 1.45 1.90 4.50 8.93 8.93 11.42 14.74 14.74 14.74 16.34 16.34
Full 0.08 0.08 0.84 3.16 3.33 3.33 3.33 8.05 8.05 10.57 10.57 11.13 11.13

Upper 2.35 2.68 4.98 5.85 7.38 10.47 11.45 14.09 16.08 16.08 18.62 18.62 18.62
Lower 0.13 -0.18 0.84 1.66 3.34 3.34 3.99 8.56 8.90 14.27 14.27 14.27 14.27
Both 1.41 2.90 2.74 2.22 2.73 2.73 2.73 4.57 6.13 8.16 10.14 11.53 11.53

Table 5. Averaged gap between the unweighted accuracy (%) on the training and validation partitions over 4-fold cross valida-
tion.

Torch [19] library. Only the Shake-Shake combination [9] is
used and shaking is applied independently per frame. Due
to space limit, we leave other combinations for future work.
The models are learned using the Adam optimizer [20] with
an initial learning rate of 0.001 and the training is carried out
on an NVIDIA Tesla K80 GPU. We use a mini-batch of 64
utterances across all model training and let each experiment
run for 200 epochs in order to investigate the regularization
power when over-training occurs.

3.3. Results
Table 4 and 5 summarize the benchmarking of the unweighted
accuracy (UA) of cross validation and the gap of UA between
training and validation with respect to different patience in
early stopping.

In Table 4, the underlined numbers indicate when a model
performs better than the baseline. A clear trend is that if the
training process is stopped early, models with regularization
tend to outperform the baseline. On the other hand, if the
training goes too far, the situation is almost entirely the op-
posite. However, even when over-trained the margin that the
baseline has over the other regularized models is only around
1% except for the model Lower. One thing to note, in particu-
lar, is that the model Lower seems to struggle with difficulties
in capturing the affective pattern since the beginning.

In Table 5, the underlined numbers indicate when a model
has a smaller gap than that of a baseline under the same pa-
tience. The apparent trend here is that if we let the train-
ing keep going, almost all regularized models tend to have
a smaller gap compared to the baseline; in other words, the
baseline tends to overfit more under the same patience in early
stopping. We also note the model Upper, despite being reg-
ularized, appears to have a larger gap than the baseline does
since the beginning of learning.

Fortunately, these two trends overlap about when patience

equals 17. In both Table 4 and 5, the boldfaced numbers rep-
resent when a model performs not worse than the baseline
and has a smaller gap. Based on these two criteria, the models
Full and Both both demonstrate a superior performance while
staying far from being over-trained. Moreover, the model
Both is able to match the performance of the baseline even in
the over-trained region where patience equals 41, while still
achieving a smaller gap compared to the baseline. Another
observation is that regularized models generally require more
patience to reach the same gap, especially the model Both.
This suggests early stopping under the same patience may not
be an universally optimal strategy.

When benchmarked with the model Full, the model Both
always has a higher accuracy whenever they achieve com-
parable gaps (e.g. 3.33 versus 2.73, 8.05 versus 8.16, etc),
and most of the time when under the same patience. This
phenomenon corroborates our hypothesis that independently
shaking the sub-bands would help to learn a better model for
affective computing. Nevertheless, the concerning fact that
the models Upper and Lower show totally different charac-
teristics requires further investigation in the future.

4. CONCLUSIONS

We have proposed a Shake-Shake regularized multi-branch
ResNet model for speech emotion recognition. In particular,
we have experimented with different configurations for the
Shake-Shake regularization on the full band, the upper and
the lower sub-bands alone and simultaneously. The results
support our hypothesis that shaking different sub-bands with
independent strength would benefit learning in affective com-
puting. With a commonly used patience, say 17, the models
Full and Both are able to deliver competitive performances
over the baseline with reduced over-fitting. However, given
the opposite behaviors of the models Upper and Lower, fur-
ther investigation is necessary in the future.
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