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jing.han@informatik.uni-augsburg.de

ABSTRACT

Motivated by the encouraging results recently obtained by genera-
tive adversarial networks in various image processing tasks, we pro-
pose a conditional adversarial training framework to predict dimen-
sional representations of emotion, i. e., arousal and valence, from
speech signals. The framework consists of two networks, trained
in an adversarial manner: The first network tries to predict emo-
tion from acoustic features, while the second network aims at dis-
tinguishing between the predictions provided by the first network
and the emotion labels from the database using the acoustic fea-
tures as conditional information. We evaluate the performance of the
proposed conditional adversarial training framework on the widely
used emotion database RECOLA. Experimental results show that
the proposed training strategy outperforms the conventional training
method, and is comparable with, or even superior to other recently
reported approaches, including deep and end-to-end learning.

Index Terms— Emotion recognition, conditional adversarial
training, generative adversarial network

1. INTRODUCTION

Deep learning has shown great potential for Speech Emotion Recog-
nition (SER), i. e., the automatic recognition of emotion from
speech. Increasing research efforts have been made during the
last years to develop more accurate and robust emotion analysis
systems based on deep learning techniques. For example, in [1], Re-
current Neural Networks (RNNs) equipped with Long Short-Term
Memory (LSTM) cells were firstly investigated for SER, owing
to its powerful capability of learning a long range of temporal-
dependent patterns. Henceforth, LSTM-RNNs (or BLSTM for its
bi-directional version) is frequently employed for time- and value-
continuous SER as it has been found very effective [1–3]. Moreover,
in [4], generatively pre-trained Deep Neural Networks (DNNs) were
utilised to learn discriminative features of low dimension, and its
comparative performance was evaluated on large-scale databases.
In [5], deep Convolutional Neural Networks (CNNs) were employed
to extract affect salient features directly from the spectrogram, and
outperformed several well-established acoustic features. More re-
cently, an attention mechanism was further introduced to identify
the contribution of each feature extracted by the network [6].

Apart from these works that intend to explore innovative neu-
ral network architectures for SER, various advanced training strate-
gies have been investigated as well. Furthermore, prediction-based
learning was introduced in [7] to incorporate the strength of differ-
ent models, and the reconstruction-error based learning was exam-

ined in [8] to compensate the weakness of a neural network itself.
In [9], CNNs and LSTM-RNNs were sophisticatedly concatenated
into a joint framework, and trained in an end-to-end manner, i. e.,
by directly learning a suitable representation of the raw signal. Be-
sides, multi-task learning was proposed to take benefits of contextual
information that shape emotion, such as age and gender [10, 11].

In this paper we propose a novel network training framework
based on conditional adversarial training. This framework involves
two networks, where the first network tries to best generate predic-
tions as close as possible to the labels, and these predictions are
joined with the original features in order to ‘cheat’ the second net-
work that is responsible for identifying the input source, i. e., either
coming from a machine or from a pool of annotators. Compared with
the traditional pattern recognition model, the first network is trained
with an adversarial feedback from the second network, which helps
improving the reliability of the model learned in the first network.

This idea mainly stems from Generative Adversarial Networks
(GANs) [12], which has recently attracted striking attention in ma-
chine learning. However, most efforts related to GANs were made
on how to best generate sufficiently realistic samples, such as im-
ages and text [13, 14]. Few studies have considered it for pattern
recognition [15, 16]. To the best of our knowledge, this is the first
tentative work towards this research direction, especially in the field
of affective computing.

Whereas the presented conditional adversarial training frame-
work utilises a cascaded structure, as used in our previous work, i. e.,
prediction-based learning [7] and reconstruction-error-based learn-
ing [8], it includes some specific advantages in comparison to those
two approaches. The main idea of prediction-based learning is to
take advantage of different models where predictions made by a
first model are combined with the original features to learn a second
model. Therefore, the two models should be diverse enough to pro-
vide complementary views and compensate their respective weak-
nesses. Whereas the reconstruction-error-based learning aims to ex-
plore the model weakness information that can be quantified by the
reconstruction error [8], in the assumption that the model could per-
form better if we explicitly let it be aware of its errors. Thus, the two
models should be as similar as possible, so that the weakness infor-
mation extracted from the first model can be presented for the second
one. Both learning strategies are realised in an asynchronously coop-
erative ways. That is, the well-trained first model provides additional
information for the second one to assist in final decision making. The
proposed conditional adversarial training framework, however, does
not care about the similarity of the two models. Moreover, the two
models (networks) can be trained and optimised synchronously in a
competitive way, rather than asynchronously in a cooperative way.
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2. RELATED WORK

The proposed learning strategy closely relates to GANs, which is
a successful alternative to conventional maximum likelihood tech-
niques. GAN was first proposed in [12], where a deep generative
model G can be learnt to model the data distribution of the target,
while training jointly with another discriminative model D as two
players in a minimax game. To be more specific, while the dis-
criminator is trained to estimate the probability that a sample comes
from, the real data rather than the output of the generator, the gener-
ator learns to maximise the probability of fooling the discriminator.
Training of the generator and the discriminator is done iteratively,
i. e., weights are updated in turns to compete with each other. Once
training is achieved, the generator is able to generate more realis-
tic samples under such an adversarial training strategy. Many re-
searchers in machine learning have reported impressive results with
GANs and developed a bulk of variants, for instance, conditional
GAN [17], cycle GAN [18], and Wasserstein GAN (WGAN) [19].

In the speech processing domain, however, merely a few works
have been reported so far. In [20], GANs were regarded as a back-
end filter to compensate the difference between natural and syn-
thesised speech. Similar work has also been done in [21], where
GANs were used to generate speech samples with a distribution
close to natural speech. GANs were also employed to enhance noisy
speech from spectrograms [22], or enrich the volume and diversity
of training material used to detect autism spectrum conditions from
speech [23]. Overall, one could notice that GANs are mainly applied
to generate and synthesise samples of speech, which differs from the
goal of our learning framework that is particularly designed for pre-
diction.

3. CONDITIONAL ADVERSARIAL TRAINING FOR
PREDICTION

In this section, we firstly have a brief introduction of conditional
GANs. Then, we describe the framework of the proposed condi-
tional adversarial training as well as its advanced version.

3.1. Conditional Generative Adversarial Networks

Conditional GAN (CGAN) is a variation of traditional GAN, where
both the generator and discriminator are conditioned on certain extra
information c [17]. In the generator, the prior input noise variable
pz(z) is combined with the conditional information c as a joint hid-
den representation. The process of adversarial training then tries to
find how this hidden representation is composed. Likewise, in the
discriminator, the real data x or the simulated data from the gen-
erator G(z) is further extended with the conditional information c,
which are then fed into the network that is responsible for discrimi-
nation.

Mathematically, the generator G is trained to minimise the ob-
jective function:

LG = E[log(D(G(z), c))], (1)

while the discriminator D is trained to maximise the log-likelihood
it assigns to the real data:

LD = E[log(D(x, c))] + E[log(1−D(G(z), c))]. (2)

Therefore, this learning process is similar to a minimax game be-
tween the generator and the discriminator.
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Fig. 1. Framework of conditional adversarial training for prediction:
a first model (NN1) predicts time-continuous labels ŷt from a set of
acoustic features xt, whereas a second model (NN2) infers a binary
decision whether the input source comes from the real data yt or
from the first model NN1, given the context xt.

3.2. Conditional Adversarial Training for Prediction

In contrast to CGAN used for data generation, we propose to exploit
the concept of adversarial training to build a predictive model as dis-
cussed in Section 1. The framework of the proposed conditional
adversarial training is illustrated in Fig. 1. Whereas the structure is
analogue to any CGAN with the presence of two networks, the ulti-
mate goal of our system is to obtain an accurate pattern estimation
from the generator which is guided by the discriminator.

For this purpose, the algorithm of CGAN is modified. Specifi-
cally, we ignore the prior random noise, and consider the features as
conditional information, i. e.,

c← x, (3)

and the predicted emotional values as the generated data, i. e.,

G(z)← ŷ. (4)

The first network (NN1) is thus derived into a ‘conventional-like’
recognition model, and learns the conditional distribution P (yt|xt)
given sequential features xt and their labels yt. Nevertheless, the
major difference is that the NN1 is optimised not only through its
own prediction error, but also with the aid of adversarial feedback
from the second network (NN2).

For NN2, similar to CGAN, we extend the generated one-
dimensional predictions (ŷt) or the true labels (yt) with the auxiliary
information (i. e., the original feature vectors, xt) to obtain a joint
representation, i. e., [xt, ŷt] or [xt, yt], and then feed it into the
network. The network learns to identify whether the joint represen-
tation comes from the generation of the first network (False) or from
the original labels (True). Therefore, NN2 is trained to distinguish
the joint probability distributions for features and their correspond-
ing ‘predicted’ (false) labels, i. e., Pg(xt, ŷt), or ‘real’ labels, i. e.,
Pr(xt, yt).

More concretely, NN1 is optimised by changing Eq. (1) into

LNN1 = E(|G(xt)− yt|2) + λ ∗ E(log(D(G(xt),xt))), (5)

where the first item indicates the Mean Square Error (MSE) between
the prediction and the label, and λ denotes a hyper-parameter that
controls the contribution of the adversarial information from NN2,
which is optimised by

LNN2 = E(log(D(yt,xt))) + E(log(1−D(G(xt),xt))). (6)

Therefore, intuitively, NN1 is optimised to generate predictions as
close as possible to the labels, while fooling NN2 when fed with
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joint distributions composed of predictions from NN1 and acoustic
features.

3.3. Optimising with Wasserstein Distance

Traditional generative modelling approaches rely on maximising
likelihood, or equivalently minimising the Kullback-Leibler (KL)
divergence between the realistic data distribution Pr and the gen-
erated data distribution Pg [12]. One major issue this approach
suffers is the vanishing gradient problem as demonstrated in [24],
because the discriminator with infinite ability of separating real
from generated samples will lead to a constant Jensen-Shannon
(JS) divergence between Pr and Pg when their supports have no or
negligible overlap [24]. This results in an impossibility to update
the generator accordingly, as the discriminator is quickly trained
towards its optimality [24].

In this light, a Wasserstein (aka Earth-Mover) distance was pro-
posed most recently [19], so that the JS distance problem in the clas-
sic GAN can be solved by showing that the Wasserstein distance is
continuous and differential almost everywhere. Motivated by this
work, we further update the NN2 training strategy by maximising

LNN2 = E[D(xt)]− E[D(G(xt))], (7)

and the NN1 training strategy by minimising

LNN1 = E(|G(xt)− yt|2) + λ ∗ E[D(G(xt))]. (8)

In addition, a weight clipping is applied to the NN2 as follows

WNN2 ← clip by value(WNN2,−0.01, 0.01), (9)

in order to improve the stability of training as suggested in [19].

4. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of the proposed training approach
for emotion recognition, we conducted extensive experiments on a
widely used database in the affective computing community.

4.1. Selected Database and Acoustic Features

The multimodal corpus REmote COLlaborative and Affective inter-
actions (RECOLA) [25] is chosen for our experiments, owing to its
widespread examination in continuous emotion recognition [26,27].
To collect this database, 46 French-speaking participants were asked
to process remote collaborative work. Spontaneous and natural in-
teractions were collected during resolving of a collaborative task
that was performed in dyads and remotely through video confer-
ence. The corpus consists of multimodal signals, i. e., audio, video,
Electro-CardioGram (ECG), and Electro-Dermal Activity (EDA),
which were recorded continuously and synchronously. In our study,
however, only audio signals are utilised for a tentative evaluation.

It is worth mentioning that, these participants have different
mother tongues, i. e., French, Italian, and German, which pro-
vides further diversity in the encoding of affect. In order to ensure
speaker-independence, the corpus was almost equally divided into
three partitions, i. e., training (16), development (15), and test (15),
by approximate balancing the gender, age, and mother tongue of the
participants.

To annotate the corpus, value- and time-continuous dimensional
affect ratings in terms of arousal and valence were performed by six
French-speaking raters (three females) for the first five minutes of all
recording sequences. The obtained labels were then resampled at a

constant frame rate of 40 ms, and averaged over all raters by consid-
ering inter-evaluator agreement, to provide a ‘gold standard’ [25].

To extract acoustic features from the speech recordings, we
took our open-source openSMILE toolkit to extract 13 Low-Level
Descriptors (LLDs), i. e., Mel Frequency Cepstral Coefficients
(MFCCs) 0-12 and logarithmic energy, with a frame window size
of 25 ms and a step of 10 ms. The arithmetic mean and the coeffi-
cient of variance were then computed over the sequential LLDs at
a rate of 40 ms – to match the granularity of the annotation – using
overlapping windows of 8 s length, resulting in 26 statistical features
per analysis window. The total numbers of segments in the train,
development, and test partitions are 120.0 k, 112.5 k, and 112.5 k,
respectively.

4.2. Experimental Setup and Evaluation Metric

We implemented the framework with LSTM-RNN, since it has been
frequently examined to be effective in capturing long-range context
information for sequential pattern recognition tasks, for example,
continuous emotion recognition in our case [1, 27]. For the sake
of fair comparison, we took the same network structure as the one
used in [7] for both NN1 and NN2. That is, the number of hidden
layers was set to be two and the number of nodes per hidden layer
to be 20. To accelerate the training process, the network weights
were updated after running every mini-batch of eight sequences for
computation in parallel.

To train the networks, an on-line standardisation was applied to
the development and test partitions by using the means and variations
of the training partition. Besides, annotation delay compensation
was also performed to compensate for the temporal delay between
the observable cues shown by the participants, and the correspond-
ing emotion reported by the annotators. We set this delay to be four
seconds (as suggested in our previous experiments [7]) which was
duly compensated, by shifting the gold standard back in time with
respect to the features for both arousal and valence in all of our ex-
periments.

To evaluate the systems, we considered the official metric for
the AVEC in 2015 [26] and 2016 [27] in which a subset of the
corpus was featured, namely Concordance Correlation Coefficient
(CCC) [26]:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
, (10)

where ρ presents the Pearson’s Correlation Coefficient (PCC) be-
tween two time series (e. g., prediction and gold-standard), µx and
µy denote the means of each time series, and σ2

x and σ2
y are the cor-

responding variances. Compared with PCC, CCC takes not only the
linear correlation, but also the bias and variance between the two
compared series into consideration. For continuous emotion recog-
nition, we are often interested in not only the prediction trend but
also the absolute value/degree of personal emotional state. There-
fore, the metric of CCC fits better for continuous emotion recogni-
tion than PCC. Particularly, the value of CCC is in the range of [-1,
1], where +1 represents total concordance, −1 total discordance,
and 0 no concordance at all.

To refine the obtained predictions, we further performed a chain
of post-processing, including median filtering, centring, scaling, and
time-shifting as suggested in [26, 27]. All the post-processing pa-
rameters were determined on the development set, and then applied
to the test set.

To estimate the statistical significance level of performance im-
provement, Fisher’s r-to-z transformation [28] was carried out over

6824



Table 1. Performance in terms of Concordance Correlation Coef-
ficient (CCC) of the proposed conditional adversarial training ap-
proaches, as well as its variation (+ Wasserstein distance), for both
arousal and valence regressions, evaluated on the development and
test partitions.

approaches arousal valence
dev test dev test

baseline
LSTM-RNN (2 layers) .777 .718 .491 .435
LSTM-RNN (4 layers) .761 .723 .487 .390

state of the art
CCC-objective [29] .412 .350 .242 .199
end-to-end [9] .741 .686 .325 .261
reconstruction-error-based [8] .785 .729 .378 .360
prediction-based [7] .774 .744 .412 .377

proposed
conditional adversarial training .780 .732 .501 .455

+ Wasserstein Distance .797 .737 .474 .444

the whole predictions between the proposed and the baseline ap-
proaches. Unless stated otherwise, a p value less than 0.05 indicates
significance.

4.3. Results and Discussion

In the network training process, we alternatively trained NN1 and
NN2, and repeated this process (runs). In each learning run, we con-
ducted more training times on NN2 than NN1. More specially, we
experientially carried out 10 steps on NN1, and 50 steps on NN2 for
arousal prediction, and 15 steps on NN2 for valence prediction. This
operation is twofold: (i) NN2 is required to be superior enough [12],
otherwise it is vulnerable to be ‘cheated’ by the predictions, and
could not provide sufficient challenges to advance NN1; (ii) valence
prediction is normally considered as a harder task than arousal pre-
diction. Thus, NN1 needs relatively more training steps for valence
compared with arousal in each run. Besides, we optimised the hyper-
parameter of λ in Eq. (5) and (8) by a grid search in the range of [.01,
.02, .05, 0.1, .2, .5] on the development set.

Table 1 displays the result performance in terms of CCC ob-
tained from the systems by using conditional adversarial training
approaches, on the development and test partitions of RECOLA
from speech signals. For comparison, we conducted traditional
training approaches without conditional adversarial training as base-
lines. The networks with two hidden layers and four hidden layers
were respectively evaluated. It should be noted that the benchmarks
are slightly different from the ones presented in previous work [7],
which might be mainly due to the change of experimental platforms
(from CURRENNT to Tensorflow).

Compared with the baseline, it can be seen that the system per-
formance is significantly improved for both arousal and valence pre-
dictions (via a Fisher’s r-to-z transformation as outlined in Sec-
tion 4.2), when performing conditional adversarial training. Specif-
ically, on the test set, the CCC values increase to .732 for arousal
predictions, and .455 for valence predictions. The performance gain
indicates that adversarial training with NN2 brings benefit to NN1 to
further ameliorate its predictions to some extent.

When implementing the Wasserstein distance into the objective
function of NN2, the obtained results are shown in the last row of Ta-
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Fig. 2. Automatic predictions of arousal (a) and valence (b) obtained
by conducting conditional adversarial training, for a randomly se-
lected subject from the test partition on RECOLA database.

ble 1. One can observe that the performance of the system for arousal
prediction is further enhanced, i. e., from .780 to .797 of CCCs on
the development set, and from .732 to .737 of CCCs on the test set;
whereas for valence, one cannot get a similar observation. This im-
plicitly suggests that for arousal, it is somewhat effortless for NN2
to distinguish the input sources.

Furthermore, one might notice that our systems is comparable to
the state-of-the-art systems as listed in Table 1 for arousal prediction,
and outperforms all other systems for the valence prediction, which
yields the best results to date on the RECOLA database from speech.

To intuitively present the system performance, we illustrate the
arousal and valence predictions on a randomly selected subject from
the test partition in Fig. 2 (a) and (b), respectively. From the figure,
it is clear to observe that the predictions (blue lines) and the corre-
sponding gold standards (red lines) have a high correlation.

5. CONCLUSIONS

In contrast to previous works that use adversarial training for gen-
eration, in this paper, we tentatively examined the performance of
conditional adversarial training in the application of Speech Emo-
tion Recognition (SER). To stablise the learning process, we further
modified the objective function by using Wasserstein distance. A set
of experiments have been conducted on RECOLA to assess the train-
ing performance, and we find that conditional adversarial training is
helpful to improve the system performance for SER.

Future work includes more experimental evaluations on other
prediction tasks with a larger size of data [30]. Moreover, it is inter-
esting to perform an end-to-end structure to automatically extract
salient features for emotion prediction [9], rather than the hand-
crafted features that were employed in this present framework.
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