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ABSTRACT
We introduce a novel algorithm for the decomposition of a broad-
band soundfield into its component plane-waves. The algorithm,
termed Sequential Direction Detection, decomposes the sound-
field into L plane waves by recursively minimizing an objective
function that determines the plane-wave directions, strengths and
the number of plane-waves. The algorithm is described and tested
on synthetic and real data. Extensions are discussed.

Index Terms— Array Processing, Planewave decomposition

1. INTRODUCTION
The soundfield at a point in any environment carries a tremendous
amount of information, which is used by a listener to understand
source locations, message content, and the size and ambience of the
space. It would be useful to decompose the sound into its compo-
nents for identification, and obtain the location/direction and con-
tent of individual source objects, especially in applications recreat-
ing real scenes in virtual and augmented reality, where sources are
usually broadband. Microphone arrays are often used for this. An
issue faced is the lack of algorithms to perform such decomposi-
tions reliably. As such, steered beamforming has often been used
[3, 2]. Plane-wave decomposition with arrays of special shape, such
as spherical/ cylindrical [5, 7], has been suggested. However in these
cases the number of sources and their directions are not estimated.

Here, we look at the problem of incident field reconstruction at
a location by imposing the prior that the scene is generated by an
unknown number of distant broadband sources, which is collected
at a spatially compact microphone array of M microphones. The
signal from these sources (or their reflections) arrive at the array and
can be modeled as far-field plane-waves incident from various direc-
tions. Imposing this prior, we develop a formulation for identifying
the incoming plane-wave directions via computing a cost function
based on those frequencies for which the array theoretically exhibits
no aliasing. We employ a novel sequential operator formulation,
which identifies successively the leading order plane-waves. After
identifying the directions, we are able to build a plane-wave repre-
sentation over the entire audible frequency range for these directions.
Results from synthetic experiments are presented, along with a real
demonstration.

2. PROBLEM STATEMENT
We consider a broadband acoustic field received at an array of M
sensors (microphones). The field is assumed to be created by an
unknown number of plane-waves L. After converting a frame of
data to the frequency domain, assume that there are N frequencies,
and the field at each frequency at a point r is

pn (r) =

L∑
l=1

Anle
−iknsl·r, kn =

ωn

C
, n = 1, . . . , N, (1)
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where sl are the directions of arrival (DOA), ωn are the circular fre-
quencies with wave-numbers kn, and Anl the complex amplitudes.
For microphone locations r1, ..., rM , the system of equations de-
scribing microphone readings can be written in the form

L∑
l=1

Anle
−iknsl·rm = pn (rm) , m = 1, . . . ,M, n = 1, . . . , N, (2)

or in matrix-vector form

HnAn = Pn, n = 1, ..., N, (3)

where Hn is a M × L matrix with entries (Hn)ml = e−iknsl·rm ,
An aL vector with entries (An)l = Anl, and Pn theM vector with
entries (Pn)m = pn (rm). Then

Hn =
(

hn (s1) hn (s2) ... hn (sL)
)
, (4)

where hn (sl) are M vectors, known as “steering” vectors, while
Hn is called the “steering matrix”.

The problem is: given Pn, determine L, the DOA s1, ..., sL,
and amplitudes {Anl} . The field in (1) is characterized byNL com-
plex amplitudes Anl and L unit vectors sl, or 2(N + 1)L real un-
knowns for 3D (two angles/direction) and (2N + 1)L unknowns in
2D (one angle/direction). We assume directions are consistent across
frequencies (i.e., sources are broadband). The microphone readings
provide NM complex numbers pmn which yield 2NM equations
using (2) and (3). The system can be solved if

L 6
MN

N + 1
< M, in R3, L 6

2MN

2N + 1
< M, in R2. (5)

This shows that as the number of frequencies N (or bandwidth) in-
creases, the number of detectable DOA also increases. Regardless,
L must be smaller than the number of microphones M .

3. SEQUENTIAL DIRECTION DETECTION ALGORITHM
The solution of (3) can be sought by globally minimizing a suitable
cost function based on discrepancy between measured and predicted
data with respect to {An} and {sl}, in a suitable norm such as L2,

F =

N∑
n=1

wn ‖HnAn −Pn‖22 → min, (6)

where wn are some positive weights (e.g. wn = 1, n = 1, ..., N ).
Note that {sl} determine only Hn. Hence, the minimum of

the functional (6) should be achieved when the amplitudes An are
related to Pn via minimization for a given Hn, which in L2 is

An = (H∗
nHn)

−1
H∗

nPn, n = 1, ..., N, (7)

where H∗
n is the transpose conjugate of Hn and we assume H∗

nHn

is pseudo-invertible. On the other hand, this relation determines the
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optimal An as functions of directions {sl}. Substituting Eq. (7) into
Eq. (6), we can see that the number of independent variables for the
objective function reduces to L directions sl, as we have

F (s1, ..., sL) =

N∑
n=1

wnFn, (8)

Fn =
∥∥∥(Hn (H∗

nHn)
−1

H∗
n − I

)
Pn

∥∥∥2
2
,

where I is the L× L identity matrix.
Despite the reduction in dimension at this stage by only consid-

ering directions (from 2(N + 1)L to 2L in 3D, and (2N + 1)L to
L in 2D), nonlinear optimization is still expensive in L (unknown)
dimensions. Further, multiple local minima complicate the search
for the global minimum. We propose here a method for approximate
determination of the directions, which has relatively low computa-
tional complexity. We assume

s 6= t,⇒ hn (s) 6= hn (t) , n = 1, ..., N. (9)

SDD constructs steering matrices Hn via consequent determination
of optimal directions s1, s2, ... terminated by an exit criteria. At the
lth step the M × l steering matrix, which is a function of s, is

H(l)
n (s) =

(
h
(1)
n ... h

(l−1)
n hn (s)

)
. (10)

Here h
(k)
n = hn (sk) , k = 1, ..., l − 1, are constants, as the direc-

tions s1, ..., sl−1 are determined at earlier steps. We consider then
the objective function F (l) (s),

F (l) (s) =

N∑
n=1

wnF (l)
n (s) , (11)

F (l)
n (s) =

∥∥∥∥(H(l)
n

(
H(l)∗

n H(l)
n

)−1

H(l)∗
n − I

)
Pn

∥∥∥∥2
2

,

which is globally minimized at s = sl and continue recursively, as-
signing h

(l)
n = hn (sl) and setting the steering matrix H

(l)
n (sl) at

the lth iteration to Hn. The iteration terminates at l =M − 1 or

ε(l) =

(
F (l) (sl)∑N

n=1 wn ‖Pn‖22

)1/2

< εtol, (12)

where εtol is the tolerance and ε(l) is the relative error in the L2

norm, for Hn = H
(l)
n (sl)). Consider now the first step of the al-

gorithm at which we should determine s1. This corresponds to the
guess that the field is generated by one plane wave. Then H

(1)
n (s)

has size M × 1 and consists of one vector hn (s). The objective
function for the first step is,

F (1) (s)=

N∑
n=1

wnF (1)
n (s) , F (1)

n (s)=P∗
n

(
I− hn (s)h∗

n (s)

h∗
n (s)hn (s)

)
Pn.

(13)

The global minimum of any F (l) (s) over the two angles (in 3D)
or one angle (in 2D) is relatively easily found, (e.g., using gradient
methods). Denote the minimum as sl and check if the incident field
is well approximated by l plane-waves using Eq. (12). If l < M − 1
and condition (12) does not hold we go to the l + 1th step.

3.1. Recursion for SDD operators
The computational complexity of the implementation using Eqs (10)
and (11) directly increases with l. This is due to several matrix-
matrix multiplications and matrix inversion operations, which cost
O
(
l3
)
+ O

(
M2
)

for the lth step. This can be reduced to O(M2)
using a recursive process for generating the SDD operators, namely
M ×M matrices L(l)

n (s),

L(l)
n (s) = I−H(l)

n (s)G(l)
n (s)H(l)∗

n (s) , (14)

where

G(l)
n (s) =

(
H(l)∗

n (s)H(l)
n (s)

)−1

. (15)

The objective function for the lth step takes the form

F (l) (s) =

N∑
n=1

wn

∥∥∥L(l)
n (s)Pn

∥∥∥2
2
=

N∑
n=1

wnP
∗
nL

(l)
n (s)Pn. (16)

For constant matrices, computed at step l − 1 we will use notation
L

(l−1)
n = L

(l−1)
n (sl−1), G

(l−1)
n = G

(l−1)
n (sl−1), and H

(l−1)
n =

H
(l−1)
n (sl−1). Also, for brevity we drop argument s of matrix func-

tions L(l)
n ,G

(l)
n ,H

(l)
n , and vector function hn. Representing

H(l)
n =

(
H

(l−1)
n hn

)
, (17)

we obtain

G(l)
n =

( (
G

(l−1)
n

)−1

H
(l−1)∗
n hn

h∗
nH

(l−1)
n h∗

nhn

)−1

, (18)

and
(
(G

(l−1)
n )−1 = H

(l−1)∗
n H

(l−1)
n

)
. We use the following for-

mula for an arbitrary (invertible) block matrix,

G=

(
A B
C D

)−1

=

(
A−1 +A−1BECA−1 −A−1BE

−ECA−1 E

)
(19)

with E =
(
D − CA−1B

)−1. When D is scalar, E is also one, so

G =

(
A−1 0
0 0

)
+E

(
A−1BCA−1 −A−1B
−CA−1 1

)
. (20)

In our case we should set

G = G(l)
n , A−1=G(l−1)

n , B = H(l−1)∗
n hn, C=h∗

nH
(l−1)
n =B∗,

E−1 = h∗
nhn − h∗

nH
(l−1)
n G(l−1)

n H(l−1)∗
n hn=h∗

nL
(l−1)
n hn. (21)

Substituting this into definition (14) and simplifying,

L(l)
n = L(l−1)

n − L
(l−1)
n hnh

∗
nL

(l−1)
n

h∗
nL

(l−1)
n hn

, l = 1, 2, ... (22)

For l = 1, we set L(0)
n = I. Eq. (22) has stored constant matrices

L
(l−1)
n to compute F (l) (s) (see Eq. (16)), which thus requires only

a few M matrix-vector multiplications. As soon as the optimal di-
rection sl is found, the constant matrix L

(l)
n (sl) needed for the l+1

th iteration can be computed using Eq. (22), also taking O
(
M2
)

operations. The total complexity of the recursive algorithm for the
maximum number of steps is O

(
M3
)

as opposed to O
(
M4
)
.

Equation (22) reveals a number of features about the SDD algo-
rithm. First, for any s, the steering vector hn (s) is an eigenvector
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of L(l)
n (s) corresponding to zero eigenvalue, or belongs to the null-

space of L(l)
n (s). Indeed, as immediately follows from Eq. (22)

L(l)
n hn = L(l−1)

n hn −
L

(l−1)
n hnh

∗
nL

(l−1)
n hn

h∗
nL

(l−1)
n hn

= 0. (23)

Second, Eq. (22) shows that any eigenvector of L(l−1)
n , l > 1, corre-

sponding to zero eigenvalue will be also eigenvector of L(l)
n , so the

nullspace of operator L(l)
n includes the nullspace of operator L(l−1)

n .
Therefore, we have by induction that all vectors h(1)

n ,h
(2)
n ,..., h(l−1)

n

are the eigenvectors of L(l)
n corresponding to zero eigenvalues.

Third, this shows that for s = sl−1 we have L
(l)
n (s) = L

(l−1)
n

and so F (l) (s) = F (l−1) (sl−1). Therefore, min F (l) (s) 6
minF (l−1) (s) = F (l−1) (sl−1) and we have by induction

minF (l) 6 . . .minF (1) 6 F (0)≡
N∑

n=1

wn ‖Pn‖22 . (24)

For success, we should have strict inequalities in Eq. (24). In this
case the minimal F (l) (s) should be at some s = sl 6= sl−1. This
also means that all directions found would be distinct.

Fourth, if we do have s1, ..., sl all different, the steering vectors
h
(1)
n , ...,h

(l)
n corresponding to these directions are also different (see

Eq. (9)). This means that in this case rank(L(l)
n (sl)) =M − l since

the nullspace of L(l)
n (sl) is

ker
(
L(l)

n

)
= span

(
h(1)
n , ...,h(l)

n

)
, dim

(
ker
(
L(l)

n

))
= l. (25)

This shows that L(M)
n (s) ≡ 0, F (l) (s) ≡ 0 for any s, consistent

with the fact that the maximum number of steps is l =M − 1.

3.2. SDD algorithm summary
We define the followingM×M matrices L(l)

n (s) andM×1 vectors
l
(l)
n (s) as functions of direction s :

L(0)
n (s) ≡ I, (26)

l(l)n (s) = L(l)
n (sl)hn (s) , l = 0, 1, 2, ...,

L(l)
n (s) = L(l−1)

n (sl−1)−
l
(l−1)
n (s) l

(l−1)∗
n (s)

l
(l−1)∗
n (s) l

(l−1)
n (s)

, l = 1, 2, ...,

where I is the identity. We define the objective (steering) function as

F (l)
n (s)=P∗

nL
(l)
n (s)Pn, F (l) (s) =

N∑
n=1

wnF (l)
n (s) , (27)

and the relative norm of the residual

ε(l)=

(
F (l) (sl)

‖P‖22

)1/2

, ‖P‖22=
N∑

n=1

wn ‖Pn‖22 , ‖Pn‖22=P∗
nPn.

(28)

The SDD algorithm then is the following:
• Set some tolerance, εtol < 1,
• compute and store ‖P‖22
• set l = 0, ε(l) = 1,L

(l)
n (sl) = I.

• while ε(l) > εtol
1. l = l + 1;

2. find and store sl = argminF (l)
SDD (s) ;

3. evaluate L
(l)
n (sl);

4. evaluate ε(l);
• L = l; the required set of directions is {s1, ..., sl} .
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Fig. 1. The initial spectrum functions for experiments A (top) and
B (bottom) plotted on a logarithmic scale, where MUSIC-1 refers to
MUSIC with single-frame covariance estimation.

4. EXPERIMENTAL DEMONSTRATION

We perform a set of experiments based on simulated and real data.
In each simulation we place a number of sources in a virtual room.
Only direct paths are considered in simulations. Each source sig-
nal was independently generated pink noise. The simulated micro-
phones are omnidirectional and record at 44.1 kHz. Gaussian white
noise is added to each simulated recording with SNR of 10 dB.

We design a total of four synthetic experiments, labeled as A,
B, C, D, and one real experiment labeled E. In the synthetic exper-
iments, we compare the spectrum functions of MUSIC and SDD,
where the SDD spectrum function is the reciprocal of its objective
function (though note the SDD is performed over multiple iterations
and uses a more complex cost function than what is plotted). In the
real experiment, we compare the directions computed by SDD to
ground truth. The frame size was selected to be 2048. We denote
the azimuth and elevation of a source relative to the array center as
(φ, θ). Note that MUSIC is given the number of sources present and
uses 4 frames of data to perform the modified covariance estimation
described in [4], while SDD determines the number of sources and
uses only one frame.

Experiment A: A horizontal 16-element uniform linear array
with element spacing of 0.1 meters records a single source at (20, 0).
The algorithms process a single frequency band corresponding to
∼1.5 kHz (the wavelength is roughly twice array spacing), and eval-
uate their spectrum at 256 equally-spaced points corresponding to
azimuths between -90 and 90 degrees for both display and peak
searching.

Experiment B: The configuration of this experiment is the same
as that of experiment A, except the acoustic scene now consists of
three sources located at (20, 0), (−30, 0), and (−60, 0). An addi-
tional result was obtained with MUSIC using only a single frame for
covariance estimation.

Experiment C: Extending the previous experiments in both
azimuth and elevation, we simulate a recording using a 64-element
array with microphones arranged in an equally-spaced 8×8 grid
with spacing of 0.02 meters. The scene consists of four sources
at (20,−10), (10, 25), (−30, 0), and (−32, 5). Note the close
arrangement of two sources. Both algorithms process 20 frequency
bands in the approximate frequency range 7.8 kHz – 8.6 kHz, so that
the wavelengths are between 2 and 3 times the array spacing. The
spectrum functions are evaluated on a p × p grid corresponding to
azimuths and elevations between -45 and 45 degrees, where p is 128
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Fig. 2. The spectrum functions for experiments C and D displayed as
contour plots on a dB scale. For SDD, the spectrum functions after
0, 1, 2, and 3 iterations are displayed left to right, top to bottom.

for MUSIC and 64 for SDD. For MUSIC, the sum of each individual
band’s spectrum is used.

Experiment D: We use a more irregular array based on that of
experiment E (Fig. 3(a)), with microphone spacing comparable to
the grid array in experiment C. All other details of this experiment
mirror that of experiment C.

Experiment E: As a test of SDD’s viability in practice, we use a
64-element array to record a moving source inside a room. 32 frames
of these recordings were processed with SDD on 50 frequency bands
in the 2.5 Hz–4 kHz frequency range. The SDD objective function
was evaluated on a 32×32 grid over -45 to 45 degrees in azimuth and
elevation. The array also recorded a video using a camera mounted
in the array’s center; as ground truth, we compute incident angles
using the video frames corresponding to the processed frames.
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Fig. 3. The array used in experiment E (a), and parametric plots of
the true and computed source directions in experiment E (b).

5. DISCUSSIONS AND CONCLUSIONS
Fig. 1 shows results of experiments A and B. From experiment A,
we see that the peak of SDD is similar to that of MUSIC for a single-
source recording. For multi-source recordings, the initial spectrum
of SDD is much flatter in comparison to MUSIC, and has much
wider peaks. However, note that these peaks are not the actual peaks
from which the DOA are derived by SDD: only the strongest peak is
used at the first step of the algorithm. Peaks which are flat or even
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Fig. 4. The relative error after each iteration of SDD in all synthetic
experiments.

invisible at the initial steps become stronger and sharper in conse-
quent steps after stronger peaks are removed. Experiment B shows
that the peaks of SDD at the first step of the algorithm are compa-
rable in width to those of MUSIC when a single frame is used for
covariance estimation.

Fig. 2 similarly shows that SDD was able to detect all four
sources in experiments C and D. We also observe a noticeable dif-
ference in the MUSIC spectrums of these experiments: in exper-
iment D, the MUSIC spectrum contains an extraneous peak near
(−5,−30). Since the MUSIC method in this case assumes a signal
subspace of rank 4, we can infer that the method was unable to dis-
tinguish between the close sources and treated them as one source.
In comparison, there are no such extraneous peaks in the MUSIC
spectrum for experiment C, suggesting that the method correctly ac-
counted for all four sources. As SDD produced similar results in
both experiments, this result suggests that SDD is less dependent on
array geometry than MUSIC.

Fig. 3(b) plots the principal source directions computed by SDD
and those computed as ground truth as a pair of curves parameterized
by frame number. The curve for SDD travels in roughly the same
path as the ground truth, albeit with some fluctuations. Such a result
suggests that SDD is also applicable in real environments.

We now analyze the relative error computed after each iteration
of SDD in all synthetic experiments. As seen in Fig. 4, if we set
the error tolerance as ≈ 0.3, the method yields the correct number
of sources in all experiments. Note that this tolerance is close to
the relative amplitude of the -10 dB microphone self-noise. Thus for
optimal performance we should set an error tolerance proportional to
the magnitude of measurements not accounted by the SDD model.

This algorithm is similar to classical MUSIC [1] and its exten-
sions [4, 6]. The latter paper considers extensions similar to that
considered here: multi-frequency sources. However, no decompo-
sition is performed there; instead, there are strong assumptions on
the frequency content and numbers of sources. In contrast, our algo-
rithm is general.

An interest of ours is to pursue a representation that combines
the leading planewaves/sources and the ambient field. To achieve
this, the current algorithm would have to be extended to include near
soures, and finally the residual after SDD/source estimation would
be represente via a low-order ambisonics representation. Other pos-
sible uses include source localization/separation. Future work will
look at obtaining real time implementations, extend the algorithm to
arrays on baffled objects, and further characterization of this algo-
rithm.
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