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Abstract— We introduce deep transform learning – a new 

tool for deep learning. Deeper representation is learnt by 

stacking one transform after another. The model is akin to a 

feedforward neural network. The first layer learns the 

transform and features from the input training samples. 

Subsequent layers use the features (after activation) from the 

previous layers as training input. However, this explanation is 

only given for intuitive understanding; the ensuing problem is 

not solved in a greedy fashion. All the layers are solved jointly. 

Experiments have been carried out with other state-of-the-art. 

Results on classification and clustering show that our proposed 

technique is better than all the said techniques, at least on the 

benchmark datasets compared on.   

Keywords— deep learning, transform learning 

I.  INTRODUCTION  

Transform learning is an analysis formulation; the transform 
is learnt such that it analyses the signal to generate 
coefficients. It has been introduced only recently [1-4]. So 
far transform learning has been primarily applied for solving 
inverse problems like denoising and reconstruction; arising 
in signal processing. There are a few short studies that have 
used it for unsupervised representation learning [5-7]. 
Dictionary learning is its synthesis equivalent; a basis 
(dictionary) is learnt so as to regenerate / synthesize the data 
from the corresponding representation. Dictionary learning 
has its roots in matrix factorization [8] / sparse coding [9]. 
Its popularity has resurfaced in the last decade with the 
success of KSVD [10]; the unsupervised version is mostly 
used in signal processing for solving inverse problems [11, 
12]. In machine learning dictionary learning has been used 
immensely for supervised classification (e.g. [13]) and 
clustering (e.g. [14]). In recent years kernelized versions of 
dictionary learning also being proposed for machine 
learning problems [15-17].  

The success of deep learning is popular knowledge 
today. Deeper architectures like stacked autoencoder (SAE) 
and deep belief network (DBN) are built by stacking 
shallow representation learning tools like autoencoder and 
restricted Boltzmann machine (RBM) in a layered fashion.  

Dictionary learning, although well known in the machine 
learning community, has been traditionally overlooked as a 
candidate for building deep architectures. It is only in recent 
times, layers of single level dictionaries have been stacked 
one after the other leading to the framework of deep 
dictionary learning (DDL) [18, 19]. The framework has 
been successfully used for addressing real world problems 

in hyper-spectral imaging [20], biometrics [21] and energy 
analytics [22] among other areas.   

Following the success of deep dictionary learning, this 
work introduces deep transform learning. The main idea is 
to learn a representation through multiple layers of 
transforms connected via non-linear activations. A 
rudimentary sub-optimal solution to this problem has been 
proposed by the authors in [23]; the aforesaid solution is 
greedy – learning proceeds layer-wise without any cross-
talk between the layers. This corresponds to the greedy pre-
training paradigm in deep learning without any fine-tuning.  

In this work we propose an optimal solution where all 
the layers are learnt jointly. The transition from greedy to 
the proposed optimal solution is not trivial. The greedy 
solution is easy, since it does not need any algorithmic 
development; the standard transform learning technique [1-
4] can be used. For the proposed optimal learning paradigm, 
one needs to derive an algorithm. However the results will 
show the benefits of the optimal solution; the results 
improve significantly from the greedy solution.  

II. LITERATURE REVIEW 

As mentioned before transform learning is the analysis 
equivalent of dictionary learning. Although the technique is 
known to the signal processing community we review it for 
the sake of completeness. The model is expressed as 

TX Z       (1) 

Here T is the transform, which operates on the data X to 
generate the representation Z.  

The optimization problem for transform learning is 
expressed as –  

 2 2

1,
min + logdet +

F FT Z
TX Z T T Z     (2) 

The l1-norm enforces sparsity on the representation. This 
is important for inverse problems arising in signal 
processing; but there is no intuitive of theoretical reason for 
enforcing this for problems arising in machine learning – 
apart from a regularization term.  

The factor logdetT imposes a full rank on the learned 

transform; this prevents the degenerate solution (T=0, Z=0). 

The additional penalty 
2

F
T is to balance scale; without this 

logdetT can keep on increasing producing degenerate 

results in the other extreme. 
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The minimization problem (2) is solved by alternately 
updating the two variables.  

2

1
min

FZ
Z TX Z Z    

 2 2
min + logdet

F FT
T TX Z T T      

Updating the coefficients is straightforward. It can be 
updated via one step of soft thresholding. There is a closed 
form update for the Transform as well. This is given by –   

T TXX I LL   

1 T TL XZ USV   

 2 1/2 10.5 ( 2 ) TT R S S I Q L     

Our proposed deep transform learning is the multi-layer 
extension of the shallow one. It can be thought of as 
application of multiple levels of transforms to generate the 
coefficients. Mathematically this is expressed as follows –   

2 1( ...( ( ( )))NT T T X Z       (3) 

Here φ denotes the activation function; without which all the 
transforms will collapse into a single one. 

In [23], we proposed a greedy solution for (3); we solve  
one layer at a time. With the substitution 

1 2 1 1( ...( ( ( )) ZN NT T T X   , (3) can be expressed as, 

1N NT Z Z       (4) 

where 1 2 1 1( ...( ( ( )) ZN NT T T X   . This can be alternately 

expressed as, 

1

1 2 1 1...( ( ( )) (Z )N NT T T X  

     (5) 

With the substitution 
2 2 1 2( ...( ( ( )) ZN NT T T X   , we 

have for the next layer, 

1

1 2 1(Z )N N NT Z  

       (6) 

Continuing the substitution in this fashion till the final 
layer, we have 

1

1 1(Z )T X        (7) 

Note that for all the layers, it is easy to invert the activation 
φ since they operate element-wise.  

We start solving for the different layers of transforms in 
backward direction; starting from (7); this is easily solved 
using the standard transform learning formulation (2). 

Once Z1 is solved for, it acts as the input for the second 

layer for solving T2 and Z2 from 
1

2 1 2(Z )T Z   by applying 

standard transform learning formulation (2). The same 
process is repeated for other layers. The advantage of such a 
greedy training paradigm is that for each level, one only 
needs solving a shallow transform learning problem which 
has algorithms with convergence guarantees.  

During testing, the objective is to generate the test 
feature (ztest) given the input test sample (xtest). This is 
expressed as, 

2 1( ...( ( ( )))N test testT T T x z      (8) 

The multiple layers of transforms have already been learnt 
during the training phase. Therefore during testing, one 
simply needs to apply them one after the other. 

III. PROPOSED SOLUTION 

The greedy approach is sub-optimal since there is no flow of 
information from deeper to shallower layers. In deep 
learning this issue is addressed by backpropagation during 
the fine-tuning stage for supervised learning problems. We 
are proposing an unsupervised representation learning 
technique; there are no outputs to backpropagate from. 
Hence, we need to derive an algorithm for solving all the 
layers of transforms via joint optimization framework.  

The deep transform learning formulation is given in (3). 
We repeat it for the sake of convenience. 

2 1( ...( ( ( )))NT T T X Z    

The joint optimization problem we intend to solve is as 
follows,  

 

2

2 1
' ,

2

1

min ( ...( ( ( )))

log det

i
N FT s Z

N

i iF
i

T T T X Z

T T

 






 
   (9) 

This will be solved using the variable splitting approach; 
a technique that is gaining popularity in signal processing 
[24, 25]. Using the same substitutions as in the greedy 

approach, i.e., 1 2 1 1( ...( ( ( )) ZN NT T T X   we can express 

the augmented Lagrangian for (14) as, 

 
1

2 2

1
' , ,

1

2
1

1 2 1 1

min log det

...( ( ( ) (Z )

i N

N

N N i iF FT s Z Z
i

N N F

T Z Z T T

T T T X



  








 

  

 


 (10) 

As in the greedy solution, we have used the fact that 
inverting the activation function is trivial since it operates 
element-wise.  

In the second, step we substitute, 

2 2 1 2( ...( ( ( )) ZN NT T T X   ; this allows expressing (10) as 

follows (in terms of augmented Lagrangian), 

 
1 2

22 1

1 1 2 1
' , , ,

2

1

2

2 2 1 2

min (Z )

log det

( ...( ( ( )) Z

i N N
N N N N NF FT s Z Z Z

N

i iF
i

N N F

T Z Z T Z

T T

T T T X

 



  

 



   



 

  

 

 

 (11) 

Continuing in this fashion, with the final substitution 

1 1( ) ZT X  , we get the complete augmented Lagrangian 

formulation,  
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2

2 21
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1

min (Z )

(Z ) log det
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N

N N i i iF FT s Z Z
i

N

i iFF
i

T Z Z T Z
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 (12) 

The alternating direction method of multipliers 
(ADMM) [29] allows (12) to be segregated into the 
following sub-problems. 

 2 2

1 1P :min logdet
N

N N N NF FT
T Z Z T T     

 
1

2 21

2 1 2 1 1 1P :min (Z ) logdet
N

N N N N NFFT
T Z T T  





        

… 

 
1

2 21

N 1 1 1 1P :min (Z ) logdet
FFT

T X T T      

2

N+1 1 1P :min N N N NFZ
T Z Z T Z Z     

1

1

22 1

N+2 1 1 2 1

2 2

1 1 2 1

P :min (Z )

min ( ) Z

N

N

N N N N NF FZ

N N N N NF FZ

T Z Z T Z

T Z Z T Z

 

 







   

   

  

   
 

… 

1

2 21

2N 2 1 2 1 1P :min (Z ) ( ) Z
FFZ

T Z T X     

We see that the sub-problems P1 to PN are all standard 
transform updates. We already know how to solve them. 
Solving for the final / deepest representation is simple; 
follows from PN+1. Solution of the intermediate 
representations are from PN+2 to P2N. All of them are least 
squares problems in their equivalent form; hence has a 
closed form solution – pseudo-inverse.  

Notice that we have kept the Lagrangian multiplier (µ) 
constant for all the layer. Moreover, it is imperative that we 
give equal importance to all the layers and hence we keep 
μ=1 throughout. This is usually not the case for generic 
optimization problems. However, in this work we argue that 
each of the layers have an equal importance, μ equaling 
unity is a logical choice.  

This concludes the derivation of the joint optimization 
algorithm. Each of the sub-problems have closed form 
solutions. However unlike the greedy solution, which only 
required repeated application of transform learning for each 
layer – and hence was bound to converge (given the 
convergence guarantees of each layer), proving the 
convergence guarantees for our proposed joint optimization 
algorithm is beyond the scope of this work.  

The testing stage remains the same as the greedy 
technique. One only needs to apply one transform after 
another in the correct order with the activation functions to 
generate the representation of a test sample.  

 

Initialization 

Unlike most deep learning techniques where all the 
layers are initialized randomly, we only have to initialize T1, 

that too for solving 
1

1 1(Z )T X   from the training data. 

After solving the transform learning problem, the obtained 
value of T1 becomes the initial value for the ensuing 
iterations.  

Once the first layer of coefficient Z1 is learnt, it is used 
to initialize the second layer of transform by solving 

1

2 1 2Z (Z )T   . The second layer representation is used to 

initialize the transform for the third layer and so on.  

IV. EXPERIMENTAL RESULTS 

A. Clustering 

There are only a handful of studies in deep learning based 
clustering. We compare with three major ones – deep 
dictionary learning [19], stacked autoencoder (SAE) [30] 
and Deep Subspace Clustering (DSC) [31]. We follow the 
experimental protocol found in [31]; the said paper 
compares [30] and [19] uses the same protocol as [31].  

In the aforesaid paper, experiments were carried out on 
the COIL20 (object recognition) and Extended YaleB (face 
recognition) datasets. For both the datasets DSIFT (dense 
scale invariant feature transform) and HOG (histogram of 
oriented gradients) features were extracted. They were 
further reduced by PCA to a dimensionality of 300. Since 
the groundtruths (class labels) for these datasets are 
available, clustering accuracy was measured in terms of 
NMI (normalized mutual information), ARI (adjusted rand 
index) and F-score. The results are shown in Table I 
(COIL20) and Table II (YaleB). 

The architectures used for comparison have been 
obtained from the published studies since they were the best 
performing ones according to the authors. Both SAE and 
DSC uses a five layer architecture with 300-200-150-200-
300 nodes; both of them use tanh activation function. Prior 
study on DDL used a four tier architecture with 600-300-
150-75 nodes; the activation function is tanh.  

For our proposed deep transform learning (DTL) a three 
layer architecture (tanh activation) with 300-150-75 basis in 
each layer was used. It has already been mentioned that the 
value of the hyper-parameter μ is fixed at unity. The value 
of the parameter λ has been fixed to 0.1 throughout; we 
checked that the results are stable for values of λ between 
0.05 and 0.5.  

In DDL, SAE and our proposed technique, after the 
obtaining the coefficients from the final layer a simple K-
means clustering is used. In [30] it has been found that using 
more sophisticated clustering techniques like spectral 
clustering does not improve the results significantly – they 
tested with K-means and spectral clustering. Following 
those results we chose to stick with simple K-means in this 
work; the same has been done in [19].  
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TABLE I 
CLUSTERING ON COIL 20 

Method DSIFT HOG 

NMI ARI F-score NMI ARI F-score 

SAE 77.09 56.59 59.07 89.26 74.25 75.70 

DSC 91.19 84.80 85.58 91.19 81.92 82.86 

DDL 91.04 84.60 83.54 90.12 80.20 81.30 

Greedy DTL 92.36 85.08 84.96 91.51 81.88 8259 

Proposed  94.38 86.92 88.56 93.37 84.24 85.82 

 

TABLE II 
CLUSTERING ON YALEB 

Method DSIFT HOG 

NMI ARI F-score NMI ARI F-score 

SAE 87.54 75.82 76.50 93.43 82.57 83.07 

DSC 90.85 83.00 83.45 96.91 90.25 89.46 

DDL 90.20 81.83 83.42 96.82 88.97 89.13 

Greedy DTL 91.27 82.51 84.66 97.12 90.56 90.48 

Proposed  93.26 85.62 85.86 98.93 93.43 92.06 

 

The results are consistent with prior studies. Both the 
greedy technique and the joint optimization technique excel 
over all previous studies. But the results from joint 
optimization are the best; it is at least 2% (in most case 
2.5% or more) higher than the best previous technique – 
deep subspace clustering.  

B. Classification on Benchmark Datasets 

Classification will be carried out on three benchmark 
deep learning datasets – MNIST (60K training and 10K 
testing), 20-newsgroup and GTZAN (music genre 
classification). The reason for choosing these diverse 
datasets is to show that our proposed technique excels over 
others in a variety of domains – image (MNIST), NLP (20-
newsgroup) and audio (GTZAN).  

In the 20-newsgroup dataset, the training and test sets 
contain documents collected at different times, a setting that 
is more reflective of a practical application. The training set 
consists of 11,269 samples and the test set contains 7,505 
examples. We have used 5000 most frequent words for the 
binary input features. We follow the same protocol as 
outlined by [32]. 

The GTZAN music genre dataset [33] contains 10000 
three-second audio clips, equally distributed among 10 
musical genres:  blues, classical, country, disco, hip-hop, 
pop, jazz, metal, reggae and rock.  Each example in the set 
is represented by 592 Mel-Phon Coefficient (MPC) features.  
ThSince there is no predefined standard split and fewer 
examples, we have used 10-fold cross validation (procedure 
mentioned in [34]), where each fold consisted of 9000 
training examples and 1000 test examples. 

In this work, we compare our proposed deep transform 
learning (DTL) with three state-of-the-art representation 
learning techniques; two of them are supervised – they are 
class sparse stacked autoencoder (CSSAE) [35] and class 
sparse DBN (CSDBN) [36]. The third one is unsupervised; 
it is deep dictionary learning (DDL) [19]. For all these 
techniques we found that by reducing the number of nodes 
in each layer to half that of the previous layer yields the best 
results consistently. In the CSSAE and the CSDBN 
formulations one needs specifying the sparsity parameter; 

for CSSAE a value of 0.1 yields the best results and for 
CSDBN the corresponding value is 0.02. There is no 
parameter required for the DDL technique. 

Our proposed DTL uses a simple approach for fixing the 
number of nodes in each layer. It uses a three layer 
architecture where the number of basis are halved in 
subsequent layers, i.e. for MNIST since the input of length 
784, the number basis in first layer is 392, in the second it is 
196 and in the third it is 98. For other datasets, the values 
change accordingly. 

All the techniques compared against, can only learn a 
representation; they do not have in-built classifiers. Hence, 
we employ two off-the-shelf classifiers – nearest neighbor 
(NN) and support vector machine (SVM) with rbf kernel. 
The parameters of SVM have been tuned via grid search for 
each technique. The results are shown in Tables III and IV.  

 

TABLE III 

RESULTS FOR NEAREST NEIGHBOUR CLASSIFICATION 

Dataset CSSAE CSDBN DDL  Greedy DTL Proposed 

MNIST 97.33 97.05 97.75 97.62 97.91 

20-newsgroup 70.48 70.09 70.48 70.98 72.64 

GTZAN 83.31 80.99 83.31 83.31 83.89 

 
TABLE IV 

RESULTS FOR SVM CLASSIFICATION 

Dataset CSSAE CSDBN DDL  Greedy DTL Proposed 

MNIST 98.50 98.53 98.64 98.52 98.71 

20-newsgroup 71.29 71.18 71.97 72.40 73.19 

GTZAN 83.42 81.83 84.92 83.68 85.18 

 
The results show that our proposed method outperforms 

others. The previous greedy version does not always beat 
DDL, but our proposed optimized version does. Our 
proposed deep transform learning results are significantly 
better than the supervised stacked autoencoder and deep 
belief network based results.  

The results from CNN for GTZAN is 59.20 (this is in-
line with the one reported in [36]); for MNIST CNN yields 
an accuracy of 98.40 with a modified LeNet architecture; for 
the 20-newsgroup data CNN is not applicable. Our proposed 
method beats CNN based results for the MNIST and 
GTZAN.  

V. CONCLUSION 

This work introduces a new tool for deep learning – deep 
transform learning. There are three well known pillars of 
deep learning today – deep belief network, stacked 
autoencoder and convolutional neural network. A recently 
proposed technique, deep dictionary learning is also gaining 
popularity. Our initial work on deep transform learning, 
shows promise. On benchmark classification and clustering 
problems we outperform existing deep learning techniques.   

This initial work is unsupervised. In future, we will 
make it supervised problems. We will modify the proposed 
formulation with supervised penalties like label consistency, 
logistic regression and soft-max classification. We also plan 
to introduce sub-space clustering penalties like Experiments 
will also be carried out on more practical problems.  

6785



REFERENCES 

[1] S. Ravishankar and Y. Bresler, "Learning Sparsifying Transforms," 
IEEE Transactions on Signal Processing, Vol. 61 (5), pp. 1072-1086, 
2013. 

[2] S. Ravishankar, B. Wen and Y. Bresler, "Online Sparsifying 
Transform Learning-Part I: Algorithms," IEEE Journal of Selected 
Topics in Signal Processing, Vol. 9 (4), pp. 625-636, 2015. 

[3] S. Ravishankar and Y. Bresler, "Online Sparsifying Transform 
Learning-Part II: Convergence Analysis," IEEE Journal of Selected 
Topics in Signal Processing, Vol. 9 (4), pp. 637-646, 2015. 

[4] S. Ravishankar and Y. Bresler, "Efficient blind compressed sensing 
using sparsifying transforms with convergence guarantees and 
application to magnetic resonance imaging", SIAM Journal on 
Imaging Sciences, Vol. 8 (4), pp. 2519-2557, 2015. 

[5] S. Shekhar, V. M. Patel and R. Chellappa, "Analysis sparse coding 
models for image-based classification," IEEE ICIP, pp. 5207-5211, 
2014. 

[6] J. Maggu and A. Majumdar, "Robust Transform Learning", IEEE 
ICASSP, 2017. 

[7] J. Maggu and A. Majumdar, "Alternate Formulation for Transform 
Learning", ICVGIP, 2016. 

[8] D. D. Lee and H. S. Seung, "Learning the parts of objects by non-
negative matrix factorization", Nature, Vol. 401 (6755), pp. 788-791, 
1999. 

[9] B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive 
field properties by learning a sparse code for natural images", Nature, 
Vol. 381 (6583), pp. 607, 1996. 

[10] M. Aharon, M. Elad and A. Bruckstein, "$rm K$-SVD: An Algorithm 
for Designing Overcomplete Dictionaries for Sparse Representation," 
IEEE Transactions on Signal Processing, Vol. 54 (11), pp. 4311-4322, 
2006. 

[11] F. Cao, M. Cai, Y. Tan and J. Zhao, "Image Super-Resolution via 
Adaptive $ell _{p} (0<p<1)$ Regularization and Sparse 
Representation," IEEE Transactions on Neural Networks and 
Learning Systems, Vol. 27 (7), pp. 1550-1561, 2016. 

[12] J. J. Thiagarajan, K. Natesan Ramamurthy and A. Spanias, "Learning 
Stable Multilevel Dictionaries for Sparse Representations," IEEE 
Transactions on Neural Networks and Learning Systems, Vol. 26 (9), 
pp. 1913-1926, 2015. 

[13] Z. Li, Z. Lai, Y. Xu, J. Yang and D. Zhang, "A Locality-Constrained 
and Label Embedding Dictionary Learning Algorithm for Image 
Classification," IEEE Transactions on Neural Networks and Learning 
Systems, Vol. 28 (2), pp. 278-293, 2017. 

[14] L. Jing, M. K. Ng and T. Zeng, "Dictionary Learning-Based Subspace 
Structure Identification in Spectral Clustering," IEEE Transactions on 

Neural Networks and Learning Systems, Vol. 24 (8), pp. 1188-1199, 
2013. 

[15] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi and R. Chellappa, 
"Kernel dictionary learning," IEEE ICASSP, pp. 2021-2024, 2012. 

[16] A. Shrivastava, V. M. Patel and R. Chellappa, "Multiple Kernel 
Learning for Sparse Representation-Based Classification," IEEE 
Transactions on Image Processing, vol. 23 (7), pp. 3013-3024, 2014. 

[17] K. K. Huang, D. Q. Dai, C. X. Ren and Z. R. Lai, "Learning Kernel 
Extended Dictionary for Face Recognition," IEEE Transactions on 
Neural Networks and Learning Systems, vol. 28 (5), pp. 1082-1094, 
2017. 

[18] S. Tariyal, A. Majumdar, R. Singh and M. Vatsa, "Deep Dictionary 
Learning," IEEE Access, Vol. 4, pp. 10096-10109, 2016. 

[19] V. Singal and A. Majumdar, "Majorization Minimization Technique 
for Optimally Solving Deep Dictionary Learning", Neural Processing 
Letters, 2017, doi:10.1007/s11063-017-9603-9. 

[20] V. Singhal, H. Agrawal, S. Tariyal and A. Majumdar, "Discriminative 
Robust Deep Dictionary Learning for Hyperspectral Image 
Classification", IEEE Transactions on Geosciences and Remote 
Sensing, 2017, DOI: 10.1109/TGRS.2017.2704590. 

[21] I. Manjani, S. Tariyal, M. Vatsa, R. Singh, A. Majumdar, "Detecting 
Silicone Mask based Presentation Attack via Deep Dictionary 
Learning," IEEE Transactions on Information Forensics and Security, 
Vol. 12 (7), pp. 1713-1723, 2017. 

[22] S. Singh and A. Majumdar, “Deep Sparse Coding for Non-Intrusive 
Load Monitoring”, IEEE Transactions on Smart Grid (accepted). 

[23] J. Maggu and A. Majumdar, "Greedy Deep Transform Learning", 
IEEE ICIP, 2017. 

[24] J. M. Bioucas-Dias and M. A. T. Figueiredo, "Multiplicative Noise 
Removal Using Variable Splitting and Constrained Optimization," 
IEEE Transactions on Image Processing, Vol. 19 (7), pp. 1720-1730, 
2010. 

[25] C. Wu and X.-C. Tai. "Augmented Lagrangian method, dual methods, 
and split Bregman iteration for ROF, vectorial TV, and high order 
models." SIAM Journal on Imaging Sciences, Vol. 3 (3), pp. 300-339, 
2010. 

[26] D. Jakoveti?, J. M. F. Moura and J. Xavier, "Linear Convergence 
Rate of a Class of Distributed Augmented Lagrangian Algorithms," 
IEEE Transactions on Automatic Control, Vol. 60 (4), pp. 922-936, 
2015. 

[27] A. R. Conn, N. IM Gould and P. Toint. "A globally convergent 
augmented Lagrangian algorithm for optimization with general 
constraints and simple bounds." SIAM Journal on Numerical Analysis 
Vol. 28 (2), pp. 545-572, 1991. 

 

 

6786


