
THE LEARNED INEXACT PROJECT GRADIENT DESCENT ALGORITHM

Raja Giryes#† Yonina C. Eldar� Alex M. Bronstein† Guillermo Sapiro#∗

#† School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel 69978
� Electrical Engineering Department, Technion - IIT, Haifa, Israel, 32000
† Computer Science Department, Technion - IIT, Haifa, Israel, 32000

# Electrical and Computer Engineering Department, Duke University, Durham, NC, 27708

ABSTRACT

Accelerating iterative algorithms for solving inverse problems
using neural networks have become a very popular strategy in
the recent years. In this work, we propose a theoretical analy-
sis that may provide an explanation for its success. Our theory
relies on the usage of inexact projections with the projected
gradient descent (PGD) method. It is demonstrated in various
problems including image super-resolution.

Index Terms— Inverse Problems, Sparse Representation,
Deep Learning, LISTA, Algorithm Acceleration

1. INTRODUCTION

Consider an inverse problem in which we want to recover x ∈
Rd from y = Mx+e, where M ∈ Rm×d is the measurement
matrix and e ∈ Rd is additive noise. This setup appears in
many applications such as image deblurring, super-resolution
and more. Often the recovery of x from y is an ill-posed
problem, e.g., when M has fewer rows than columns (m <
n). For good reconsturction, additional assumptions on the
structure of x is required. A popular strategy is to assume
that it resides in a low dimensional set K, e.g., sparse vectors
[1]. In this case, the minimization problem becomes

min
x
‖y −Mx‖22 s.t. x ∈ K. (1)

This can be reformulated in an unconstrained form as

min
x
‖y −Mx‖22 + λf(x), (2)

where λ is a regularization parameter and f is a cost function
related to K. For example, for K the set of k-sparse vectors,
we may pick f(·) = ‖·‖0 or its convex relaxation f(·) = ‖·‖1.

A popular technique for solving (1) and (2) is using itera-
tive programs such as proximal methods [2, 3] that include the
iterative shrinkage-thresholding algorithm (ISTA) [4, 5, 6].
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As many applications impose a constraint on the number of
computations to be performed to recover x, many acceler-
ation techniques have been proposed for proximal methods
[4, 5, 7, 8]. A prominent one is learned ISTA (LISTA) [9],
which learns a neural network that has the same structure as
ISTA but with only several layers. It reaches virtually the
same accuracy as the original ISTA using significantly less it-
erations. This acceleration by neural networks has been used
with many other methods and not only ISTA [10, 11, 12, 13].
Contribution. While many acceleration techniques for ISTA
were proposed together with a thorough theoretical analysis,
the powerful LISTA method was introduced without mathe-
matical justification for its success. Very recently, a connec-
tion was drawn between the convergence speed of LISTA and
the factorization of the Gram matrix of M [14], the restricted
isometry property (RIP) [15] and vector approximate message
passing (VAMP) [16]. Yet, all these results focus mainly on
the case of sparse x. Our work is not restricted to this case
and applies to general low-dimensional models.

We focus on the projected gradient descent (PGD) algo-
rithm, whose iterations are almost identical to the ones of
ISTA but with an orthogonal projection instead of a proxi-
mal mapping. An acceleration technique for it is proposed,
which is very similar to the one of LISTA, accompanied with
theoretical analysis. We demonstrate the PGD acceleration in
two cases: recovery of sparse representation with tree struc-
ture and image super-resolution using a pair of dictionaries
[17]. For brevity, we omit the proofs from this paper. More
details appear in a longer version of this paper [18].

2. BACKGROUND

ISTA is an iterative technique for minimizing (2) given by

zt+1 = Sf,µλ (zt + µM∗(y −Mzt)) , (3)

where zt is its outcome at iteration t, µ is a step-size (constant
in our work) obeying 1

µ ≥ ‖M‖ to ensure convergence [4]
and Sf,λ(·) is a proximal mapping with parameter λ obeying

Sf,λ(v) = argminz
1

2
‖z− v‖+ λf(z). (4)
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This mapping has a simple form for many functions f , e.g., if
f(·) = ‖·‖1, it is an element-wise shrinkage function,

S`1,λ(v)[i] = sgn (v[i])max(0, |v[i]| − λ). (5)

Thus, the advantage of ISTA is that its iterations require only
the application of matrix multiplications followed by a simple
non-linear function. Yet, its main drawback is the large num-
ber of iterations that is typically required for convergence.

LISTA accelerates ISTA using the neural network:

zt+1 = Sf,λ (Ay +Uzt) , (6)

where A ∈ Rd×m, U ∈ Rd×d and λ are learned from training
examples by back-propagation with the minimization objec-
tive being the `2-distance between the final ISTA solution and
the LISTA one (after T iterations) [9]. Other objectives may
be used, e.g., training LISTA to minimize (2) directly [10].

PGD is similar to ISTA but with an orthogonal projection
onto K, PK, instead of proximal mapping. It reads as

zt+1 = PK (zt + µM∗(y −Mzt)) , (7)

where µ is the step-size. If K is the `1-ball then PK is soft
thresholding with a value that varies depending on the pro-
jected vector [19]. Note the similarity to (5). This similarity
is not unique to the `1-norm case but happens also for other
types of f such as the `0 pseudo-norm and the nuclear norm.

PGD generalizes the iterative hard thresholding (IHT) al-
gorithm, which was developed for K being the set of sparse
vectors [20] and later used to more general sets [21]. Theory
for its convergence has been developed in [22] for the set

K =
{
z ∈ Rd : f(z) ≤ f(x)

}
.

Their theory relies on the tangent cone of the function f at
x. We provide here a variant of this theory for the noiseless
case that relies directly on K via its Minkowski difference
K −K = {z− v : z,v ∈ K}.

Theorem 2.1 Let x ∈ K, K ⊂ Rd be a closed cone, M ∈
Rm×d and y = Mx. The estimate zt of PGD with a projec-
tion onto K (initialized with z0 = 0) obeys

‖zt − x‖ ≤ (κKρ(K))t ‖x‖ , (8)

where κK = 1 if K is convex and κK = 2 otherwise, and

ρ(K) = ρ(µ,M,K) = sup
u,v∈(K−K)∩Bd

u∗ (I− µM∗M)v, (9)

is the convergence rate of PGD.

The Gaussian Mean Width measures the complexity ofK:

ωK = E[ sup
v∈(K−K)∩Bd

〈g,v〉], g ∼ N(0, I). (10)

For example, ifK is the k-sparse set ωK = O
(√

k log(d/k)
)

,
and if it has also a tree structure (an entry may be non-zero
only if its parent node is non-zero) ωK̂ = O(

√
k) [23].

The relationship between the PGD convergence rate and
the Gaussian mean width has been developed in theorems
2.2 and 2.4 in [22] for the case that M is random Gaussian
matrix. Using their result it can be shown that the smaller
ωK, the faster the convergence. More specifically, if m is
very close to ωK, then we may apply PGD with a step-size
µ = 1

(
√
d+
√
m)2
' 1

d and have a convergence rate of

ρ(K) = 1−O
(√

m− ωK
m+ d

)
. (11)

If ωK is smaller than
√
m by a certain constant factor, then

PGD with the step size µ ' 1
m obtains improved convergence

ρ(K) = O

(
ωK√
m

)
. (12)

Note that (11) and (12) set a limit on the minimalm for which
PGD iterations converge to x, namely m = O(ω2

K). This im-
pliesm = O(k log(d/k)) for k-sparse vectors andm = O(k)
if they have a tree structure. The above connection between
ρ(K) and ωK is not unique only to random Gaussian matrices.
A similar relationship holds for many other types of M [22].

3. INEXACT PGD (IPGD)

It may happen that K is too loose for describing x. Selection
of a set K̂ that better characterizes x will lead to a smaller
ωK̂, resulting in faster convergence. This improvement can
be very significant; smaller ω both improves the convergence
rate and allows using a larger step-size (see (11) and (12)).
For example, consider the case of a k-sparse vector x, whose
sparsity pattern obeys a tree structure. If we ignore the tree
structure and project only onto the k-sparse set K then ωK =
O(k log(d/k)) [24]. Yet, if we add the tree structure and use

K̂ = {z ∈ Rd : ‖z‖0 ≤ ‖x‖0 & z obeys a tree structure} (13)

then ωK̂ = O(k) [23]. As mentioned above, this improve-
ment might be very significant especially when m is very
close to ωK. Such an approach was taken in the context of
model-based compressed sensing [21], where faster conver-
gence is achieved by projecting onto K̂ instead of K.

A difficulty often encountered is that the projection onto
K̂, which may even be unknown, is more complex to imple-
ment than the projection ontoK. The latter is easier to project
onto but provides a lower convergence rate. Thus, in this work
we introduce a method that compromises between the recov-
ery error and convergence speed by using PGD with an inex-
act “projection” that projects onto a set that is approximately
as small as K̂ but yet is as computationally efficient as the
projection onto K. In this way, the computational complexity
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Fig. 1. Reconstruction error as a function of the iterations (left) and the running time (right) for recovering a sparse vector with
tree structure. As we initialize all algorithms with the zero vector, the error at iteration/time zero is ‖x‖.

of each PGD iteration remains the same but the convergence
rate becomes closer to the one with a projection onto K̂.

Our “projection” is composed of a simple operator p (e.g.,
linear) and the projection onto K, PK, such that it introduces
only a slight distortion into x. If K is convex, then we require

‖x− PK (p(x))‖ ≤ ε ‖x‖ . (14)

and if K is non-convex, we require

‖PK (pv − px)− PK (pv − x)‖ ≤ ε ‖x‖ ,∀v ∈ Rd. (15)

An example for p that satisfies (15) appears in Section 5.
Plugging the inexact projection into the PGD step results in
the proposed IPGD iteration (compare to (7)),

zt+1 = PK (p (zt) + µp (M∗(y −Mzt))) . (16)

4. IPGD CONVERGENCE ANALYSIS

We now move to analyze the performance of IPGD. For sim-
plicity of the discussion, we analyze the convergence of this
technique only for a linear operator p and the noiseless set-
ting, i.e., e = 0. The extension to other types of operators
and the noisy case is straightforward by arguments similar to
those used in [22] for treating the noise term and other classes
of matrices. The proof of the theorem appears in [18].

Theorem 4.1 Let x ∈ K, K ⊂ Rd be a closed cone, p(·) a
linear operator satisfying (15), M ∈ Rm×d and y = Mx
a vector containing m linear measurements. Assume we are
using IPGD with K and p to recover x from y. Then the
estimate zt at the tth iteration (initialized with z0 = 0) obeys

‖zt − x‖ ≤

(
(κKρp(K))t +

1− (κKρp(K))t

1− κKρp(K)
γ

)
‖x‖ , (17)

where κK and ρ(K) are defined in Theorem 2.1, γ ,
(2ρ(K)κK + ρp(K)κK + 1)ε , and

ρp(K) = sup
u,v∈(K−K)∩Bd

p(u)∗ (I− µM∗M) p(v) (18)

sets the “effective convergence rate” of the IPGD for small ε.

Theorem 4.1 implies that if ε is small enough compared to
ρtp, then IPGD has an effective convergence rate of ρp. Note
that if p = I then ε = 0 and we get back to Theorem 2.1. As
we shall see hereafter, for some operators p the rate ρp may
be significantly smaller than ρ(K). The smaller the set that
p maps to, the smaller ρp becomes. Yet, the approximation
error ε in (15) increases. Thus, IPGD allows us to tradeoff
approximation error ε and improved convergence ρp.

The error term in Theorem 4.1 comprises of two compo-
nents. The first goes to zero as t increases while the second
increases with iterations and is of the order of ε. The fewer
iterations we perform the larger ε we may allow. Looking at
it from another perspective, the larger the reconstruction error
we can tolerate the larger ε can be and thus the fewer iterations
we need. Therefore, the projection p introduces a tradeoff. On
the one hand, it brings additional error to the reconstruction
error. On the other hand, it simplifies the projected set, which
leads to a faster convergence (to the larger error).

5. EXPERIMENTS

Sparse recovery with tree structure. To demonstrate our
theory we consider a variant of the k-sparse set with tree
structure in (13) that has smaller weights in the lower nodes
of the tree. We generate a k-sparse vector x ∈ R127 with
k = 13 and a sparsity pattern that obeys a tree structure. We
set the non-zero entries in x independently from a Gaussian
distribution with zero mean and variance σ2 = 1 if they are
at the first two levels of the tree and σ2 = 0.22 for the rest.
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The best way to recover x is by using a projection onto the
set K̂ in (13), which is used in model-based compressed sens-
ing [21]. Yet, this projection requires some additional compu-
tations at each iteration. Our method suggests to approximate
it by a simple linear projection p onto the first levels of the
tree followed by a projection onto K = {z : ‖z‖0 ≤ k}. It is
easy to show that ε ≤ 2‖p(x)−x‖‖x‖ in this case (see (15)).

Clearly, the more levels we add in the projection p, the
smaller the approximation error ε becomes. Yet, assuming
that all nodes in each layer are selected with equal proba-
bility, then the probability of selecting a node at layer l is
equal to

∏l
i=1 0.5

i−1, where we take here into account the
fact that a node can be selected only if all its forefathers have
been selected. Thus, the upper layers have more significant
impact on the values of ε. On the other hand, the conver-
gence rate ρp(K) for a projection with l layers is equivalent
to the convergence rate for the set of vectors of size 2l (de-
noted by Kl). Thus, we get that ρp(K) = ρ(Kl), which is
dependent on the Gaussian mean width ωKl

that scales as
max(kl, k log(2l/k)). Clearly, when we take all the layers
l = log(d) and we have ωKl

= ωK = O(k log(d/k)).
Figure 1 presents the signal reconstruction error (‖x− zt‖2)

as a function of the number of iterations for PGD with the
sets K (IHT [20]) and K̂ (model-based IHT [21])1 and for
the proposed IPGD with p that projects onto a different num-
ber of levels (1-5) of the tree. All algorithms use step size
µ = 1

(
√
d+
√
m)2

. It is interesting to note that if p projects
only onto the first layer, then the algorithm does not converge
as the resulting approximation error ε is too large. However,
starting from the second layer, we get a faster convergence
at the first iterations with p that projects onto a smaller set,
which yields a smaller ρ. Yet, as the number of iterations
increases, the more accurate projections attain a lower recon-
struction error, where the plateau attained is proportional to
the approximation error of p as predicted by our theory.

This tradeoff can be used to further accelerate the conver-
gence by changing the projection in IPGD over the iterations.
Thus, in the first iterations we enjoy the fast convergence of
the coarser projections and in the later ones we use more ac-
curate projections that allow achieving a lower plateau. The
last line in Fig. 1 demonstrates this strategy, where at the first
iteration p is set to be a projection onto the first two levels,
and then every four iterations another tree level is added to
the projection until it becomes a projection onto all the lev-
els (in this case IPGD coincides with PGD). Notice that while
this method converges slower than PGD with K̂ with respect
to the iteration number, it is faster in its running time.

5.1. Learning the projection – Learned IPGD (LIPGD)

In many scenarios, we may not know what type of simple
operator p causes PK(p(·)) to approximate K̂ in the best pos-

1for demonstration purposes we plot only the cases where model-based
IHT converges to zero.

Image Bicubic OMP IHT LIPGD
baboon 23.2 23.5 23.4 23.6
bridge 24.4 25.0 24.8 25.1

coastguard 26.6 27.1 26.9 27.2
comic 23.1 24.0 23.8 24.2
face 32.8 33.5 33.2 33.6

flowers 27.2 28.4 28.1 28.7
foreman 31.2 33.2 32.3 33.5

lenna 31.7 33.0 32.6 33.2
man 27.0 27.9 27.7 28.1

monarch 29.4 31.1 30.9 31.6
pepper 32.4 34.0 33.6 34.4
ppt3 23.7 25.2 24.6 25.5
zebra 26.6 28.5 28.0 28.9

Table 1. PSNR of super-resolution by bicubic interpolation
and a pair of dictionaries with various sparse coding methods.

sible way. Therefore, a useful strategy is to learn p for a given
dataset. Assuming a linear p, we may rewrite (16) as

zt+1 = PK (p (µM∗y) + p ((I− µM∗M) zt)) . (19)

Instead of learning p directly, we may learn two matrices A
and U that replace pµM∗ and p (I− µM∗M) respectively.
This results in the LIPGD iteration

zt+1 = PK (Ay +Uzt) , (20)

which is very similar to LISTA (see (6)). The only difference
between (20) and (6) is the non-linearity: It is an orthogonal
projection in the first and a proximal mapping in the second.

We use this method to replace the sparse coding step in
the super-resolution algorithm proposed in [17], where a pair
of low-res and high-res dictionaries are used for reconstruct-
ing the patches of the high resolution image from the low-
resolution one. In the code provided by the authors, OMP
with sparsity 3 is used. The complexity of this strategy corre-
sponds to IHT with 3 iterations, which we apply with higher
target sparsity level that is observed to provide better recon-
struction results. Note that in IHT, unlike OMP, the number
of iterations may be different than the sparsity level. As IHT
does not convergence with only 3 iterations, we use LIPGD
to get accelerated convergence. We train it using 91 images
from the dataset used for training the dictionary in [17] being
split into a training set of size 86 and a validation set of size 5
(used for tuning the hyper-parameters of the LIPGD such as
the target sparsity). Table 1 presents the advantage of using
LIPGD over generic bicubic interpolation and IHT and OMP
(with 3 iterations) for sparse coding.

6. CONCLUSION

In this work we developed a theory that offers an explanation
to the recent success of neural networks for approximating the
solution of certain minimization problems. We demonstrate
the usage of our result in the context of sparse recovery with
tree structure and in the problem of image super resolution.
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