
RED-UCATION: A NOVEL CNN ARCHITECTURE
BASED ON DENOISING NONLINEARITIES

Yaniv Romano‡• Michael Elad? Peyman Milanfar?

‡Department of Electrical Engineering, Technion, Haifa 32000, Israel.
?Google Research, Mountain View, California 94043, USA.

ABSTRACT

Image denoising is the most fundamental image enhancement
task, and many algorithms have been proposed over the years
for its solution. Interestingly, such an image denoising “en-
gine” can be used to solve general inverse problems. Indeed,
in our recent work we have presented the Regularization by
Denoising (RED) framework: using a denoising engine in
defining the regularization of any inverse problem. We have
shown how this scheme leads to well-founded iterative algo-
rithms in which the denoiser is applied in each iteration. In
this work we describe how a learned version of RED defines
a novel convolutional neural network architecture, where the
commonly used point-wise nonlinearities are replaced by a
denoising engine. We show how this network can be op-
timized end-to-end using a back-propagation that relies on
guided denoising algorithms. As a case-study, we concentrate
on the image deblurring problem and show the superiority of
the trainable variant of RED over its analytic form.

Index Terms— Image Restoration, Deep Learning, Neu-
ral Networks, Regularization, RED - Regularization by De-
noising

1. INTRODUCTION

Denoising is one of the most studied problems in image pro-
cessing. It started back in the 70’s with an L2-based regular-
ization and the Wiener filter, moved in the early 90’s to robust
statistics [1], PDE methods [2], and Wavelets [3], and contin-
ued in the 2000’s with the introduction of spatially adaptive
filtering such as the non-local means (NLM) algorithm [4].
More recent denoising algorithms include sparsity-inspired
methods such as the K-SVD [5] and the BM3D [6]. The cur-
rent throne holders are CNN-based methods [7, 8].

The recent progress made on the image denoising front
brought researchers to believe that to a large extent, removal
of additive noise from an image is a solved problem. This
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statement is supported by the fact that very different algo-
rithms lead to quite similar output quality (e.g. [6–8]). This
has been accompanied by a theoretical study which explored
bounds on the best possible denoising [9, 10].

Armed with these insights, an exciting branch of research
started, seeking ways to leverage the impressive progress in
image denoising to solve other problems in image processing,
and more specifically, to handle inverse problems [11, 13].
Before describing this line of work, we first define formally
the restoration task that this paper aims to address. Suppose
we are given a degraded image y = Hx+v, where y ∈ RN×M

is the input, being a corrupted version of x ∈ RN×M . The
matrix H ∈ RNM×NM is a degradation operator (e.g. blur),
and v ∈ RN×M is white Gaussian noise of known standard-
deviation σ. The restoration task is all about recovering the
unknown x given y. Notice that in the case of denoising H is
the identity matrix, thereby considered as the simplest inverse
problem. There is a long list of beautiful ideas for tackling
this restoration problem, and many of these turn this task into
a minimization of an energy function of the form:

min
x

1

2
‖Hx− y‖22 + λR(x),

where R(x) stands for a regularizer or prior.
We return to our question: How can we leverage an

existing denoising algorithm to handle the above-described
restoration task? The Plug-and-Play-Priors (P 3) approach
[11] addresses this question by relying on the idea of variable
splitting, being the core mechanism of the ADMM [12].

The Regularization by Denoising (RED) framework [13]
tackles the same task much more broadly by using denoisers
for handling general inverse problems. RED adopts a differ-
ent and theoretically better founded approach than the P 3. In
essence, RED uses a denoiser to define the regularizer R(x),
as follows:

min
x

1

2
‖Hx− y‖22 +

λ

2
xT (x− f(x)). (1)

The function f(·) is an arbitrary denoiser, and the prior
R(x) = 1

2xT (x− f(x)) is an image-adaptive Laplacian regu-
larizer [14–16]. This choice favors either a small inner prod-
uct between x and the residual (x− f(x)), or a small residual
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image. How can we minimize RED’s objective? Under mild
assumptions it was shown in [13] that ∇xR(x) = x − f(x).
Furthermore, if the spectral radius of ∇xf(x) is smaller or
equal to 1 then the objective of Eq. (1) is convex. Thus, since
we have access to the gradient of this convex objective, it can
be minimized via any convex optimization technique [17],
while leading to the globally optimal solution.

Embarking from Eq. (1), the work reported in [13] sug-
gested three iterative optimization schemes to minimize it:
the Steepest Descent, an ADMM-based method, and a Fixed-
Point (FP)-based algorithm. In this paper we concentrate on
the latter, and show that it puts forward a novel deep con-
volutional neural-network (CNN) architecture [18, 19], in
which the simple point-wise nonlinearity (e.g. ReLU [20]) is
replaced by an arbitrary image denoising algorithm. Using
this new architecture, we derive a trainable version of RED
– an end-to-end learning paradigm for solving any restora-
tion task, where the training is done by a back-propagation
algorithm [18]. A key ingredient in this process is propa-
gating reversely through the denoising algorithm, which is
handled using the concept of guided filtering. This process
puts forward a trained Fixed-Point-like scheme that achieves
better reconstruction error with significantly fewer iterations
compared to its origin – the analytic RED-based scheme.

The flavor of our work is reminiscent of the migration
from the Iterative Soft Thresholing Algorithm (ISTA) to its
learned version Learned-ISTA (LISTA). In [21] the authors
showed that a (recurrent) neural-network architecture can be
designed and trained in order to imitate and improve ISTA.
Interestingly, they reported that the learning approach signif-
icantly reduces the number of iterations required to achieve a
comparable solution to ISTA – a similar phenomenon to the
one presented in our work.

2. RED: THE FIXED-POINT STRATEGY

We consider the problem defined by the energy function

E(x) =
1

2
‖Hx− y‖22 +

λ

2
xT (x− f(x)),

and we use the FP strategy to minimize the above penalty.
Under RED’s assumptions, the gradient of E(x) is given by

∇xE(x) = HT (Hx− y) + λ(x− f(x)).

The FP strategy puts indices to the appearances of x in the
equation ∇xE(x) = 0, leading to the update rule of x̂k+1:

0 = HT (Hx̂k+1 − y) + λ(x̂k+1 − f(x̂k))

→ x̂k+1 =
(
HT H + λI

)−1 (
HT y + λf(x̂k)

)
. (2)

This algorithm is typically initialized by x̂0 = y.

3. MOVING TO A LEARNING PARADIGM

We start by proposing a generalization of the above FP iter-
ative formula, incorporating the over-relaxation idea [12] as
follows:

0 = HT (Hx̂k+1 − y) + λ(αx̂k+1 + (1− α)x̂k − f(x̂k)),

where the choice of α = 1 reduces the above to the original
FP method. By rearranging this equation we get

x̂k+1 =
(
HT H + λαI

)−1 (
HT y− λ(1− α)x̂k − λf(x̂k)

)
.

The above can be separated into three terms, as follows:

x̂k+1 = QHT y− λ(1− α)Qx̂k − λQf(x̂k),

where Q =
(
HT H + λαI

)−1
. The lesson we take is that

updating the solution x̂k+1 could be done more generally by
a system of the form

x̂k+1 = W1y + W2x̂k + W3f(x̂k),

where W1,W2, and W3 are convolution filters. An appealing
extension of this equation can be to train different such filters
Wk

j per each layer, leading to

x̂k = Wk
1y + Wk

2 x̂k−1 + Wk
3f(x̂k−1). (3)

The chain of these iterations offers a feed-forward architec-
ture for recovering x, in which each layer applies 3 convolu-
tions and a very special nonlinearity – a denoising algorithm.

Given a set of training images {xi}Pi=1 and their corre-
sponding degraded versions {yi}Pi=1, we would like to design
filters Wk

j so as to extract the best overall performance. For a
single-layer algorithm that is initialized by x̂i0 (e.g. x̂i

0 = yi),
this implies that we minimize the L2 recovery error

1

2

P∑
i=1

‖(W1
1yi + W1

2x̂i0 + W1
3f(x̂i0))− xi‖22,

and this is a Least-Squares problem over the three unknown
filters. A loss for a multi-layer architecture of depth K can be
also defined; it is initialized similarly and reads as follows

` =
1

2

P∑
i=1

‖x̂iK − xi‖22, (4)

where x̂K is the output image. This obtained architecture
is of interest because it is originated from a clear and well-
understood optimization scheme, being born from the fixed-
point algorithm referring to the RED formulation [13]. As
mentioned above, this scheme resembles a CNN with skip
connections [22] if we choose to train different filters in
each layer, or to recurrent neural network (RNN) [19] if the
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weights are shared. The core difference from standard net-
works is the non-linearity – while the common choice in CNN
is the ReLU element-wise function [20], our architecture uses
an image denoiser, which is believed to be tuned much better
to image content. Due to this change, a shallow network of
our algorithm could replace a deeper version of regular CNN.

Comparing this approach to a direct use of the iterations
in Eq. (2), the hope is that the learned method would be much
more efficient, as it optimizes the filters (possibly chosen to be
different per layer), and targets the reconstruction error with
respect to the ground-truth images. Whereas the original FP
algorithm is applicable to any content in y (and x), our scheme
is specifically tailored to serve the family of images we are
training on. Thus, this approach is likely to lead to much
better performance if this family of images is compact.

A challenge that we found when defining this architecture
touches on the special structure of the filters involved. Specif-
ically, one can assume that Wj

k are of convolutional form, and
they have a relatively small support which facilitates learn-
ing. However, this puts a limit on the achievable effect of
the proposed algorithm in Eq. (3), since the original iteration
in FP scheme uses much wider filters due to the inversion(
HT H + λαI

)−1
. How could we overcome this gap?

The answer we propose is working in the transform do-
main. Recall that each filtering operation of the form Wy
could be written alternatively as THTWTHTy, where T is
any unitary transform. Choosing T to diagonalize W, i.e.
TWTH = Λ where Λ is a diagonal matrix, the above can
be written as Wy = THTWTHTy = THΛTy. In words,
this expression applies a transform on the incoming image
(z → Ty), multiplies each ’frequency’ bin by the proper
scaler weight Λi,i, and then transforms the result back to the
pixel-domain. Using this rationale, we revisit Eq. (3) and get

x̂K = THΛK
1 Ty + THΛK

2 Tx̂K−1 + THΛK
3 Tf(x̂K−1).

Leveraging the diagonal structure of ΛK
j , the above equation

can be written as follows:

x̂K = MK
1 zK1 + MK

2 zK2 + MK
3 zK3 , (5)

where the column vectors zK1 , zK2 and zK3 are composed
of the diagonal entries of ΛK

1 , ΛK
2 and ΛK

3 , respectively.
The matrices MK

j are defined as MK
1 = THdiag{Ty},

MK
2 = THdiag{Tx̂K−1}, and MK

3 = THdiag{Tf(x̂K−1)}.
Armed Eq. (5) and by relying on the unitary property of T,
we rewrite the training error in Eq. (4) and get

` =
1

2

P∑
i=1

‖Tx̂i
K − Txi‖22. (6)

As such, the implication of the transition to the transform do-
main is that we take the images xi, yi, x̂i

K−1, f(x̂i
K−1) and

apply a transform on them, and then work on each bin sepa-
rately, optimizing 3 scalars (or 6 in case of a complex trans-
form) per each such frequency bin. We choose the Fourier

transform as it diagonalizes the linear space invariant convo-
lutions, with the cost of dealing with complex numbers.

3.1. Back-Propagation Rules for RED
In the process of optimizing the multi-layered filters of the
proposed architecture, we employ the back-propagation (BP)
algorithm. This use of BP is conventional apart from one ma-
jor difference: we encounter the need to pass through the gra-
dients of the denoisers in each layer. If the denoiser is given as
an independent CNN (e.g. [7,8]), one can simply consider the
entire path as a large CNN and optimize it end-to-end, while
keeping the parameters of the denoiser intact. However, we
would like to use available general purpose denoisers, and the
question is how to handle the back-propagation in this case.

In order to answer this question, we present a much sim-
pler system which exposes both the difficulty we describe and
the remedy to it. Consider the following problem

`s =
1

2
‖Mbf(Maz)− γ‖22 (7)

where, just as in Eq. (5), z is a set of filter coefficients in
the transform domain, Ma represents the combination of the
image to be filtered along with the inverse transform to the
pixel-domain. Mb is yet another linear operator of general
form. The gradient of the above loss w.r.t. z is given by

∇z`
s = MH

a ∇T
x f(x)

∣∣∣
x=Maz

MH
b (Mbf(Maz)− γ) (8)

We now rely on two critical observations:

1. In many cases, the Jacobian of the denoiser f(·) is sym-
metric or can be made so [23]. This is the case with
the K-SVD [5] and the NLM filter version that is used
in this work [24]. Thus, the above transpose operation
can be discarded.

2. Many of the denoisers we operate with admit a pseudo-
linear form f(x) = A{x}x, in which the matrix A{x}
absorbs all the non-linear decisions, and then applies a
linear filtering A{x} on x. Thus, in the above equation,
the term∇xf(x)

∣∣∣
x=Maz

is essentially A{Maz} [13]. Its

multiplication by the vector MH
b (Mbf(Maz) − γ) is

nothing but a denoiser activation on this image, but this
denoiser draws its non-linearities from the image Maz
on which it has been built. This is known as “guided
filtering” and it is the strategy we employ in back-
propagating the derivatives through the architecture.

As said above, the overall optimization of our chain of
filters follows the usual back-propagation, and the above is
plugged to manage the activation of the denoiser within this
chain rule. This way, one can compute ∂`/∂Λk

j (or ∂`/∂zkj ),
for all j and k. These gradients allow us to update the pa-
rameters of the network, which can be done via the stochastic
gradient descent (SGD) algorithm.
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Fig. 1. Comparison between the average RMSE of the ana-
lytic algorithm (blue curves) and the trained one (red curves).

4. EXPERIMENTAL RESULTS

We tested the RED-UCATION paradigm on two different
datasets: Image-Net [25] and Chinese Facial images [26]. In
both cases we tackled the image deblurring problem as a way
to compare the analytic FP algorithm to its trainable variant.

The learning of the network’s parameters was done using
SGD, and common deep-learning ideas were borrowed to im-
prove the optimization. Specifically, we ran the training for
several epochs, divided the training set into batches (of size
10 images), and used ADAM [27] method (with default pa-
rameters) to improve the stochastic optimization. We chose
the symmetric NLM [24] to be our non-linear function, en-
abling to compute efficiently its derivative. Notice that this
denoiser has an inherent hyper-parameter – the input-noise
level, which was simply set to be 20 in all the experiments.

The parameters of the analytic FP algorithm were tuned
to lead to the best performance, where we used the symmetric
NLM [24] as the denoiser, just as described above.

4.1. Image-Net

We constructed a database of natural images by randomly
picking 6000 images from the validation set of Image-Net
[25], converting these to gray-scale (1 channel) and cropped
the resulting images to a fixed dimensions of 64 × 64. Next,
we divided the obtained images into a training set of 5000 ex-
amples and the remaining 1000 images served as our test set.
We then degraded the above {xi}i images by convolving these
with a 2D Gaussian blur kernel with a standard-deviation of 1,
and further contaminated the outcomes with a white Gaussian
noise of σ = 4. This process results in the corrupted versions
{yi}i of the original images {xi}i.

Fig. 1(a) presents the root mean squared error1 (RMSE),
averaged over the train or test images, of the analytic FP algo-
rithm (in blue) as a function of the iterations. As can be seen,
the error decreases as the algorithm evolves until it tends to a
plateau, getting closer to the convergence of the FP. Clearly,
50 iterations are not enough, and more iterations are required
to achieve this convergence. We should note that in this part
of our experiment, there is no conceptual difference between

1This measure is defined as RMSE(z, x) = 1√
MN
‖z− x‖2.

(a) Original (b) Input (12.07) (c) FP (6.76)

(d) K = 1 (7.11) (e) K = 3 (6.41) (f) K = 9 (6.15)

Fig. 2. Comparison between the restoration of a face image
(a,b) via the analytic algorithm (c) and its trainable variants
(d,e,f). The numbers in the parenthesis refer to the RMSE.

the errors for the train and the test - the same method applies
to both, simply changing the corpus we evaluate the error on.

Turning to the red-colored curves in the same figure, these
correspond to the trainable version of the FP algorithm, using
a different trained network of varying depth (1, 3, 5, 7, and
9). One can see the superiority of the proposed approach. We
achieved a gain in performance, both in terms of the number
of iterations (which is analogous to the depth of the network)
and the resulting average RMSE. The generalization results
on the test data are also very encouraging.

4.2. Facial Images

Differently from the above experiment, here we tested our
method on a dataset of facial images [26] of size 64× 64. We
randomly chose 4000 images for training and 900 for testing.

Similarly to the previous experiment, Fig. 1(b) compares
the average RMSE of the analytic FP algorithm and its train-
able version. As can be seen, the learning approach outper-
forms the analytic one. A visual demonstration of the result-
ing images is provided in Fig. 2. Notice how the depth im-
proves the quality of the restored image, corroborating the
numerical RMSE score, reported in Fig. 1.

5. CONCLUSIONS

In this paper we presented RED-UCATION: A trainable ver-
sion of the Regularization by Denoising framework. This
formulates a novel CNN architecture that originates from
the RED’s fixed-point optimization scheme, suggesting to
replace the simple point-wise nonlinearity used in CNN (e.g.
ReLU) with a sophisticated denoiser. We formulated the
back-propagation rules for the training of this new archi-
tecture, leading to an end-to-end learning scheme. Lastly,
we demonstrated the effectiveness of RED-UCATION by
tackling the image deblurring problem, where the obtained
results clearly show that the learned variant of RED is indeed
superior to its analytic origin.
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