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ABSTRACT

The recently proposed Multi-Layer Convolutional Sparse
Coding (ML-CSC) model, consisting of a cascade of convo-
lutional sparse layers, provides a new interpretation of Con-
volutional Neural Networks (CNNs). Under this framework,
the forward pass in a CNN is equivalent to an algorithm that
estimates nested sparse representation vectors from a given
input signal. Despite having served as a pivotal connection
between CNNs and sparse modeling, it is still unclear how to
develop pursuit algorithms that serve this model exactly. In
this work, we propose a new pursuit formulation by adopting
a projection approach. We provide new and improved bounds
on the stability of the resulting convolutional sparse repre-
sentations, and we propose a multi-layer projection algorithm
to retrieve them. We demonstrate this algorithm numerically,
showing that it is superior to the Layered Basis Pursuit alter-
native in retrieving the representations of signals belonging
to the ML-CSC model.

Index Terms— Convolutional Sparse Coding, Multi-
layer Pursuit, Stability Guarantees, Convolutional Neural
Networks.

1. INTRODUCTION

Sparse representation modeling assumes that natural signals
can be (well) described as a linear combination of only a few
building blocks or components, commonly known as atoms
[1]. This model has been extensively studied, and a plethora
of works have provided different methods to carry out the pur-
suit of such decompositions and train the model from real data
[2]. Neural networks, on the other hand, is a classification
algorithm whose origins can be traced to almost half a cen-
tury ago [3, 4]. Recently, a convolutional variant — convolu-
tional neural networks (CNN) — together other small modifi-
cations have enabled the development of state-of-the-art ma-
chine learning methods for a wide variety of problems and
with impressive performance [5].

Most works on this new research field, termed deep learn-
ing, have been motivated mostly by intuition and with empiri-
cal justifications. Recently, some research groups have started
to provide a more theoretical understanding of CNN, borrow-
ing ideas from harmonic analysis [6], assuming Gaussian
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weights [7] and employing tensor factorization [8], among
other approaches. A precise connection between sparse
modeling and CNNs was recently presented in [11], and its
contribution is centered in defining the Multi-Layer Convolu-
tional Sparse Coding (ML-CSC) model. When deploying this
model to real signals, compromises were made in way that
each layer is only approximately explained by the following
one. With this relaxation in the pursuit of the convolutional
representations, the main observation of this work is that the
inference stage of CNNs — nothing but the forward-pass —
can be interpreted as a very crude pursuit algorithm seeking
for unique sparse representations. The work in [11] further
proposed an improved pursuit for approximating the sparse
representations of the network, termed Layered Basis Pur-
suit. Nonetheless, neither this nor the forward pass serve the
ML-CSC model exactly, as they do not provide signals that
comply with the model assumptions. In addition, the theoreti-
cal guarantees accompanying these layered approaches suffer
from bounds that become looser with the network’s depth.

In this work we focus on defining a pursuit problem for
signals belonging to this model. In particular, given proper
convolutional dictionaries, we study the question of how to
project signals onto the ML-CSC model. This problem is fun-
damentally different to the one studied in [11], as its solution
should satisfy the model constraints exactly. This in turn en-
ables the development of tighter recovery guarantees than cur-
rent ones. We further derive a simple algorithm to carry out
this projection in practice. The resulting multi-layer pursuit is
compared experimentally with the Layered Basis Pursuit al-
gorithm [11], showing that it provides better recovery of the
multi-layer representations of signals in this model.

2. SINGLE AND MULTI-LAYER CONVOLUTIONAL
SPARSE CODING

The Convolutional Sparse Coding (CSC) model assumes a
signal x € RY admits a decomposition as D;~;, where
~1 € RY™ is sparse and D; € RN*N™1 has a con-
volutional structure. This dictionary consists of mj local
ni-dimensional filters at every possible location (Figure 1
top). As a result, each j** patch P;,x € R™ from the
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signal x can be expressed in terms of a shift-invariant local
model corresponding to a stripe from the global sparse vector,
S;v1 € RCZmi=1mi_n this context, the sparsity of the rep-
resentation is better captured through the ¢y o, pseudo-norm
[12]. This measure, as opposed to the traditional ¢y, provides
a notion of local sparsity and it is defined by the maximal
number of non-zeros in a stripe from . Formally,

71,0 = max Sl 1)

The Multi-Layer Convolutional Sparse Coding (ML-
CSC) model is a natural extension of the CSC described
above, as it assumes that a sparse representation ~y; also al-
lows for a decomposition in terms of CSC model. Formally,
given a set of convolutional dictionaries {D;}% ; of appro-
priate dimensions, a signal x € R” admits a representation
in terms of the ML-CSC model if

x=Diy1, [mllfe <A1,
71 = Doz, [[72ll6.00 < A2,
YL-1= DL’YL) ||PYLH8,OO < AL

We denote as My the set of signals satisfying the ML-
CSC model assumptions with parameters given by A =
[A1,...,Ar], and we will employ the notation x(=;) € M
to emphasize that x allows for a decomposition in terms of the
ML-CSC representations {v;}~ ;. Note that x(vy;) € My
can also be expressed as x = DD, ...Drvy;. We will
further denote D) as the effective dictionary for the i‘"
level, i.e., D = D;Ds...D,. Therefore, for any layer,
x = D0~

2.1. Pursuit in the noisy setting

Real signals often contain noise or deviate from the above
idealistic model assumption, preventing us from enforcing
the above model exactly. Consider the measurements y =
x(v;) + v, with x(;) € M,y and v a nuisance vector of
bounded energy, ||v]|2 < &. In this setting, the pursuit prob-
lem becomes searching for sparse convolutional representa-
tions that provide an approximation to y. In its most general
form, this pursuit is represented by the Deep Coding Problem
(DCPf), as introduced in [11] and given by

(DCP%) . find {v;} £, s.t. 2)
ly — Dimill2 < &, [7116,00 < A1
71 — Davzll2 < &1, 72115,00 < A2

[ve-1 —Drvella <E€c-1, [velle,00 < Ars

where the scalars \; and &; are the i*" entries of X and &,
respectively. The solution to this problem was shown to be

x € RV

Py x =

Y, € RVm2

71 € RN"”

Py, € RPam {

U
Fig. 1: The CSC model (top), and its ML-CSC extension by
imposing a similar model on «; (bottom). From a local per-
spective, a patch from the signal, Py ;x has a corresponding
sparse stripe given by S; ;1. An analogous decomposition
can be stated for a patch from the signal ~,, represented by
Py jm.

stable in terms of a bound on the ¢»-distance between the es-
timated representations 4; and the true ones ;. These results
depend on the characterization of the dictionaries through
their mutual coherence, (D), which measures the maximal
normalized correlation between atoms in the dictionary. For-
mally, assuming the atoms are normalized as ||d;|2 = 1 Vi,
this measure is defined as

n(D) = max ] d;]. 3)

Relying on this measure, Theorem 5 in [11] shows that given
a signal x(v;) € Pa, contaminated with noise of known
energy £2, if the representations satisfy the sparsity constraint

u(llazv)) ’ @

then the solution to the DCP¥ given by {4;} %, satisfies'

1
il < = (1
Il < 5 (14

i 4i—1
A2 < 48,2 .
I = 3ills < 480° 11— e ——1y,m;)

J=1

®)

Interestingly, several layer-wise algorithms, including the for-
ward pass of CNN, provide approximations to the solution of
this problem [11]. Despite its significance, we note two draw-
backs of this problem. First, these bounds increase with the
number of layers or the depth of the network, which is a direct
consequence of the layer-wise relaxation in the above pursuit.
On the other hand, given the underlying signal x(v;) € M,

!In the particular instance of the DCP f where S,'_ =0forl1 <i< L-1,
the above bound can be made tighter by a factor of 4°~1 while preserving the
same form.
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this problem searches estimates {#;}X ; that approximately

explain each layer. However, because ||9;—1 — D;¥;]|2 > 0,
this problem does not provide a signal that satisfies the ML-
CSC model assumptions.

3. APROJECTION ALTERNATIVE

We now focus on the problem of finding an estimate X that,
unlike the previous approach, would have an expression in
terms of a ML-CSC decomposition. In other words, we are
interested in projecting the measurements y onto the set M y.
We formalize this problem as

X(vi) € Ma.

(6)
Note that the solution to this problem, {%;}, is required to
belong to the set My, implying that v;_; = D;~y; Vi. A
solution to the DCP f problem, on the other hand, would pro-
vide estimates “; that explain each layer approximately, but
such that v, _1 # D;~; Vi.

(Pamy) s min o ly =x(%i)[2 st

{7 iLzl

3.1. Stability of the projection Py,

Clearly, both problems (2) and (6) provide estimates =y; for
the measurement y = x(=;) + v. In light of the stability
result of the DCPf problem, how close will the solution of
the Ppq, problem be from the underlying representations?
We now provide such a stability guarantee.

Theorem 1. Stability of the solution to the Py, problem:
Suppose x(7y;) € My is observed through'y = x + v, where
v is a bounded noise vector, ||v||2 < Eo, and ||vi[|§ o = Ni <
% (1 + ﬁ),forl < i < L. Consider the set {%;}%_| to
be the solution of the Py, problem. Then,

4E2
2[7ill§,00 — L)u(DD)

i —Aill3 < 7
[l 'rl\zfli( @)

Interestingly, this theorem provides a bound on the dis-
tance to the true representation -; which is not cumulative
over the layers, allowing for generally tighter results than
those in (5). In other words, the bound does not increase with
the network’s depth. This is achieved by relying on the mu-
tual coherence of the effective dictionary for that layer, D@,
as opposed to the mutual coherence each individual dictio-
nary. Note that this is a potentially useful characterization,
as the effective dictionary is expected to become less corre-
lated as one considers more global atoms. Lastly, while the
conditions imposed on the sparse vectors -y; might seem pro-
hibitive, one should remember that this results from a worst
case analysis. Moreover, one can effectively construct ana-
lytic nested convolutional dictionaries with small coherence
measures, as shown in [11].

We now prove the above result.

Algorithm 1: ML-CSC Projection Algorithm
Init: x* =0
fork=1:)\; do
41, + Pursuit(y, D(F) | k) ;
forj=L:—1:1do
| A1 < DA
if || 915,00 > Ai for any 1 < i < L then
L break;
else
| x* « DO4;

return x*

Proof. Denote the solution to the Py, problem by X; i.e.,
% = D(®4;. Given that the original signal x satisfies |y —
x||2 < &, the solution to the Py, problem, X must satisfy

ly —%ll2 < [ly —xl[]2 < &, (3

as this is the signal which provides the shortest 5 (data-
fidelity) distance from y. Note that because X(v;) € M,
we can have that x = D(i)‘yi, V1< 4 < L Recall-
ing Lemma 1 in [13], the product D1D>...D; is a con-
volutional dictionary. In addition, we have required that

19ill§.00 < X < 3 (1 + ﬁ) Therefore, from the same
arguments presented in [12], it follows that

4E8
2[ill§ 00 = V(D)

3.2. ML-CSC Pursuit O

Hw—%ﬁslf( ©)

The above result provides a stability bound for the solution
to the Ppq, problem, but it does not specify how to solve
it practically. In the context of the DCPf , One can approxi-
mate its solution in a layer-wise manner, solving for the sparse
representations 4y; progressively from ¢ = 1,..., L. Surpris-
ingly, the Forward Pass of a CNN is one such algorithm, and
it provides an approximate solution of this problem [11]. A
better alternative was also proposed in that work, where each
representation 4; is sparse coded in a Basis Pursuit formu-
lation given the previous representation ;1 and dictionary
D;. This algorithm is called Layered Basis Pursuit (BP).

Moving to the variation proposed in this work, how can
one solve the P, problem in practice? Note that employ-
ing a similar layer-wise approach is fruitless: after obtaining
a necessarily distorted estimate 4, one cannot proceed with
equalities for the next layers, as «; does not necessarily have
a perfectly sparse representation with respect to D5. Herein
we present a solution based on global sparse coding strategy
that propagates the obtained solution, at every iteration, to all
the convolutional layers, as detailed in Algorithm 1.

This projection algorithm progressively recovers sparse
representations to provide a projection for any given signal y.
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Fig. 2: Decompositions of an MNIST digit in terms of its
sparse features =; and convolutional dictionaries D;.

The solution is initialized with the zero vector, and then a Pur-
suit algorithm is applied with a progressively larger ¢y o, con-
straint on the deepest representation, from 1 to A;. As shown
in [12], several sparse coding methods can be employed (and
proven) to solve this CSC problem. At each step, given the
estimated 4, the intermediate features and their ¢ o, norms
are computed. If all sparsity constraints are satisfied, then the
algorithm proceeds. If, on the other hand, any of the con-
straints is violated, the previously computed x* is reported as
the solution.

4. NUMERICAL SIMULATIONS

In this section we demonstrate the ML-CSC Projection Al-
gorithm and compare it with the Layered approach from [11]
for the problem of (multi-layer) sparse recovery. We employ
the ML-CSC dictionary from [13], trained on a corpus of real
digits (MNIST) and consisting of 3 convolutional layers?. Im-
portantly, this model allows for projecting digit images onto
the ML-CSC model, as illustrated in Figure 2.

To study the recovery of sparse vectors, we take 500 dig-
its from the MNIST dataset and project them on the trained
model, essentially running Algorithm 1 and obtaining the rep-
resentations ;. We then create the noisy measurements as
y = D(i)'Yi + v, where v is Gaussian noise with o = 0.02,
providing nothing but noisy digits. In order to evaluate our
projection approach, we run Algorithm 1 employing the Sub-
space Pursuit algorithm [14] for the sparse coding step, with
the oracle target cardinality® k. Recall that once the deep-
est representations <y, have been obtained, the inner ones are
simply computed as 4;_1 = D;#;. In the layered approach
from [11], on the other hand, the pursuit of the representa-
tions progresses sequentially: first running a pursuit for 4,
then employing this estimate to run another pursuit for s,
etc. In the same spirit, we employ Subspace Pursuit layer by
layer, employing the oracle cardinality of the representation
at each stage. The results are presented in Figure 3: at the top

2We refer the reader to [13] for more details on this model and its training.
3In order to run Algorithm 1, one also needs to define the constants ;.
For simplicity, we set these to be A\;—_1 = |[|D;||o\i, and A, = k.
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Fig. 3: Top: normalized /5 error between the estimated and
the true representations. Bottom: normalized intersection be-
tween the estimated and the true support.

Sample Sparsity
Sample Sparsity

we depict the relative /5 error of the recovered representations
(19 = vill2/ll7vill2) and, at the bottom, the normalized inter-
section of the supports [2], both as a function of the sample
cardinality £ and the layer depth.

One can see that the ML-CSC Projection Algorithm man-
ages to retrieve the representations 4; more accurately than
the layered pursuit, as evidenced by the /5 error and the error
in the estimated support. The chief reason behind the diffi-
culty of the layered approach is that the overall success relies
on the correct recovery of the first layer representations, 4;. If
these are not properly estimated (as evidenced by the bottom-
left graph), there is little hope for the recovery of the deeper
ones. The projection alternative, on the other hand, relies on
the estimation of the deepest 4, which are very sparse. Once
these are estimated, the remaining ones are simply computed
by propagating them to the shallower layers.

5. CONCLUSION

We have revisited the ML-CSC model and formalized the pur-
suit of the nested sparse representations in terms of a projec-
tion problem. The solution to this problem was shown to be
stable, providing bounds that do not scale with the network’s
depth and that are generally tighter than previous results. We
further proposed a simple algorithm to implement this in prac-
tice, and demonstrated it for the problem of sparse recovery.
Many open questions arise from the ideas presented in this
paper. For instance, is the result of the ML-CSC Pursuit al-
gorithm stable? Is this algorithm optimal? how can one guar-
antee that all 4;_; would be sparse in a more general case?
and, of course, how do we train the filters from real data in an
efficient way? All these constitute directions of our current
work.
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