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ABSTRACT
Applying a deep convolutional neural network CNN to no-
reference image quality assessment (NR-IQA) is a chal-
lenging task due to the lack of a training database. In this
paper, we propose a CNN-based NR-IQA framework that
can effectively solve this problem. The proposed method–the
Deep Blind image Quality Assessment predictor (DeepBQA)–
adopts two step training stages to avoid overfitting. In the
first stage, a ground-truth objective error map is generated
and used as a proxy training target. Then, in the second
stage, subjective score is predicted by learning a sensitivity
map, which weights each pixel in the predicted objective error
map. To compensate the inaccurate prediction of the objective
error on the homogeneous regions, we additionally suggest a
reliability map. Experiments showed that DeepBQA yields a
state-of-the-art correlation with human opinions.

Index Terms— Convolutional neural network, image
quality assessment, no-reference image quality assessment.

1. INTRODUCTION

A reliable image quality assessment (IQA) algorithm is
needed to quantify the quality of images obtained blindly
from the Internet and accurately assess the performance of
image processing algorithms. In general, IQA is classified
into three categories, depending on whether a reference image
(the pristine version of an image) is available: full-reference
image quality assessment (FR-IQA), reduced-reference im-
age quality assessment (RR-IQA), and no-reference image
quality assessment (NR-IQA). Among them, NR-IQA is the
most difficult but the most useful approach, because refer-
ence images are not accessible usually. To solve the NR-IQA
problem, most of previous methods adopted machine learn-
ing techniques, such as support vector machines and neural
networks. Research has shown that the accuracy of NR-IQA
depends heavily on designing elaborate features.

Recently, convolutional neural networks (CNNs) have
become the most popular deep learning model due to their
strong representation capability. CNNs have been success-
fully applied to lots of computer vision problems. However,
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Fig. 1: Conceptual approach of DeepBQA.

there is a critical problem that challenges the seamless appli-
cation of CNNs to NR-IQA [1]. The available training dataset
for IQA is insufficient to train deep models. For example, the
LIVE Image Quality Assessment Database [2] contains 174
to 233 images according to distortion type, while the most
widely used datasets for image recognition contain millions
of labeled images [3]. Once can use data augmentation tech-
niques such as rotation, cropping, and horizontal reflection
can be used to expand the dataset. However, it is unknown
whether any image transformation would alter perceptual
quality scores.

We recently proposed a CNN-based FR-IQA method
by learning the human visual sensitivity [4]. The proposed
model, named DeepQA, seeks the visual weight of each pixel
by using a triplet of a distorted image, its objective error
map, and its ground-truth subjective score. DeepQA was
able to achieve state-of-the-art without overfitting, because
the full-reference problem is much easier. In this paper, we
propose a novel NR-IQA framework called the Deep Blind
image Quality Assessment predictor (DeepBQA), which ex-
tends thd DeepQA to the no-reference problem. Since the
ground-truth objective error map is not available in NR-IQA,
DeepBQA also predicts the objective error map using a CNN.
The overall diagram of DeepBQA is shown in Fig. 1. In
the first stage, DeepBQA is learned to predict the objec-
tive error map. Usually, we only have one scalar score for
each distorted image. However, since the error map is two-
dimensional, it has the same effect of expanding the training
dataset by providing more constraints. Therefore, the model
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can be learned without overfitting. Since the objective error
is not highly correlated with perceptual quality, we propose
an additional CNN path dedicated to learn HVS properties, in
the second stage. Based on the predicted objective error map,
the model seeks the visual weight of each pixel like [4].

Overall, we attempt to resolve the NR-IQA problem by
dividing it into objective distortion and HVS-related parts, as
shown in Fig. 1. In the objective distortion part, a pixel-wise
objective error map is predicted using the CNN model. In
the HVS-related part, the visual sensitivity map that describes
the pixel-wise visual importance of the predicted error map
is predicted. Note that in the second part, we do not deal
with the entire NR-IQA problem, but merely focus on local
weight prediction. Since the objective error map is somewhat
correlated with the subjective score, the model can be trained
successfully by using even a limited dataset.

2. RELATED WORK

Most previously proposed NR-IQA methods were developed
based on the machine learning framework [5, 6]. Researchers
attempted to design elaborate features that could discrimi-
nate distorted images from the pristine images. One popular
feature is a family of NSS that assumes that natural scenes
contain statistical regularities. Various types of NSS features
have been defined in transformation and spatial domains in
the literature [7, 8]. Most of these studies were based on con-
ventional machine learning algorithms. Since such models
have a limited number of parameters, the size of the dataset
was not a significant issue.

Relatively recently, attempts have been made to adopt a
deep learning technique for the NR-IQA problem to enhance
prediction accuracy. First, deep models were used in place
of the conventional regression machine [9, 10, 11]. This in-
volved designing handcrafted features of sufficiently small
size such that the neural networks were not sufficiently deep
to take full advantage of deep learning. In [12], authors ap-
plied a CNN to the NR-IQA problem without handcrafted fea-
tures. This approach cannot reflect properties of the HVS,
since an equal mean opinion score (MOS) was used for all
patches in an image. In [13], FR-IQA methods were em-
ployed as intermediate training targets of the CNN, and the
statistical pooling over minibatch was introduced for end-to-
end optimization.

3. PROPOSED METHOD

Following [4], input images are first subtracted from their
low-pass filtered images. Let Ir be a reference image and
Id be the corresponding distorted image. The subtracted ver-
sions are then denoted by Îr and Îd, respectively. Once an
image is normalized, it passes through three paths: 1) objec-
tive error map prediction, 2) sensitivity map prediction, and
3) reliability map prediction.

The model consists of two subnetworks. the first subnet-
work is trained to predict the objective error map, while the
second one learns the sensitivity map. The subnetwokrs uses
the same structure: Conv-48, Conv-48 with stride 2, Conv-64,
Conv-64 with stride 2, Conv-64, Conv-64, Conv-128, Conv-
128 and Conv-1. Here, Conv refers to convolutional lay-
ers, and the numbers indicate the number of feature maps.
Each layer except for the last has leaky rectified linear units
(LReLU) as an activation function, where that of the last layer
is a rectified linear unit (ReLU).

3.1. Reliability Map Derivation

When images are severely blurred by distortions, it is diffi-
cult to determine whether the blurry region is distorted or not.
Furthermore, as severe distortion is applied to an image, its
error map includes more high-frequency components. There-
fore, the homogeneous regions are not reliable to predict the
perceptual quality in NR-IQA.

To avoid this problem, the reliability of the predicted er-
ror map is estimated by measuring the texture strength of the
distorted image.

r = 2/(1 + exp(−(|Îd|)))− 1 (1)

The positive half of the sigmoid function is used so that pix-
els with small values are assigned sufficiently large reliability
values. To prevent the reliability map from directly affecting
the predicted score, we use a normalized reliability map r̂,
where r is divided by its average.

3.2. Objective Error Map Prediction

The loss function of the first path is defined by the mean
squared error between the predicted and ground truth error
maps:

Le(Îd, Îr; θ1) =
∥∥(CNN1(Îd; θ1)− egt)� r̂

∥∥2
2

(2)

egt = |Îr − Îd|p (3)

where CNN1(·) is the CNN model in the first subnetwork,
θ1 represents the CNNs parameters. To generate the ground
truth error maps egt, the exponent difference function is used,
where p is the exponent number. We chose p = 0.2 to spread
the distribution of the difference map over the higher values.

3.3. Sensitivity Map Prediction

Because there is no ground truth sensitivity map, the model
cannot be trained to directly minimize the pixel-wise differ-
ence. Instead, we show a triplet of a distorted image, its objec-
tive error map, and its corresponding ground truth subjective
score to the deep CNN. Then, the model seeks the optimal
weights of the pixels in the error map such that the predicted
score approaches the subjective score. The visual sensitivity
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map s is first derived from the CNN model. The perceptual
error map p is then defined by

p = s� e� r̂. (4)
s = CNN2(Îd; θ2) (5)

where � is the Hadamard product, CNN2(·) indicates the
CNN model in the second path with parameter θ2, and e is
the predicted error map in (2), e = CNN1(Îd; θ1).

Since it cannot be guaranteed that the pooled score from
p has a linear relationship with the ground truth subjective
score, we feed the average of p into the nonlinear regression
layers. The objective function of the second path is defined as

Ls(Îd; θ1, θ2) = ‖(f(µp)− S)‖22 (6)

where f(·) is a nonlinear regression function, µp is the av-
erage of p, and S is the ground truth subjective score of the
input-distorted image. For the nonlinear regression function,
a fully connected neural network with one hidden layer of
4 nodes is used. When the model is optimized to minimize
(6) without any constraints, it generates too noisy sensitivity
maps, which is not desirable. To avoid this problem, we apply
a total variation (TV) L2 norm to the sensitivity map to avoid
too noisy outputs as proposed in [4].

3.4. Training

We employed the adaptive moment estimation optimizer
(ADAM) [14] with Nesterov momentum. The default hy-
perparameters suggested in the literature [14] were used for
ADAM, and the momentum parameter was set to 0.9. The
learning rate was set to 5×10−4 and 2×10−4 for the first and
seconds stages, respectively. L2 regularization was applied to
all layers (L2 penalty multiplied by 5× 10−3).

4. EXPERIEMNT AND ANALYSIS

4.1. Benchmark

Three databases are adopted to evaluate the proposed method:
the LIVE IQA database [2], CSIQ [15], and TID2013 [16].
The LIVE IQA database contains 29 reference images and
982 distorted images of five distortion types. The CSIQ
database includes 30 reference images and 866 distorted
images. TID2013 contains 25 reference images and 3,000
distorted images with 24 different distortions. To train and
test DeepBQA, we randomly divided the dataset into two
subsets, 80% for training and 20% for testing with respect to
reference images. Horizontally flipped images were supple-
mented to the training set. The training of the error prediction
step was iterated for 40 epochs, and the second stage for 60
epochs.

We compared DeepBQA with four FR-IQA methods
(PSNR, SSIM [17], FSIMc [18], and DeepQA [4]) and

Table 1: SRCC and PLCC comparison on the 3 databases.

LIVE IQA CSIQ TID2013
SRCC PLCC SRCC PLCC SRCC PLCC

FR PSNR 0.876 0.872 0.806 0.800 0.636 0.706
SSIM 0.948 0.945 0.876 0.861 0.775 0.691
FSIMc 0.963 0.960 0.931 0.919 0.851 0.877
DeepQA 0.981 0.982 0.961 0.956 0.939 0.947

NR BLIINDSII 0.912 0.916 0.780 0.832 0.536 0.628
BRISQUE 0.939 0.942 0.775 0.817 0.572 0.651
CORNIA 0.942 0.943 0.714 0.781 0.549 0.613
IL-NIQE 0.902 0.908 0.821 0.865 0.521 0.648
GMLOG 0.950 0.954 0.803 0.812 0.675 0.683
BIECON 0.958 0.962 0.825 0.838 0.721 0.765
DeepBQA 0.970 0.971 0.858 0.879 0.843 0.868

Table 2: SRCC comparison of the models trained using the
LIVE IQA database and tested on the TID2013 database.

JP2K JPEG AGN GB ALL
PSNR 0.825 0.876 0.918 0.934 0.870
BRISQUE 0.832 0.924 0.829 0.881 0.882
DeepBQA 0.947 0.901 0.827 0.915 0.913

six NR-IQA methods (BLIINDS II [7], BRISQUE [8], IL-
NIQE [19], GMLOG [20], and BIECON [13]). Following
the recommendation in [21], we evaluated the performance of
the IQA algorithms using two metrics: Spearmans rank order
correlation coefficient (SRCC) and Pearsons linear correla-
tion coefficient (PLCC).

In Table 1, the SRCC and PLCC of the FR- and NR-IQA
algorithms compared on the three databases. The correlation
coefficients of DeepBQA were averaged after the procedure
was repeated 10 times while dividing the training and test-
ing sets randomly. The best three models among the NR-IQA
methods for each evaluation criterion are shown in bold. Ital-
ics indicate deep learning-based methods. Of the NR-IQA
methods, DeepBQA generally achieved the best accuracies in
both SRCC and PLCC. On the LIVE IQA database, it is re-
markable that even the DeepBQA yielded higher accuracies
than previously proposed FR-IQA methods except DeepQA
which is a CNN-based model. As a no-reference model, it
is difficult to predict the perceptual quality accurately when
there is a global change of brightness or contrast in distorted
images. In the CSIQ and TID2013 databases, these types of
distortions are included, therefore DeepBQA achieved lower
accuracies than FSIMc and DeepQA. Compared to previous
CNN-based NR-IQA model, BIECON, there were significant
increases in the accuracies on all the databases.

4.2. Cross-dataset Test

To evaluate the generalizability of DeepBQA, the model
was trained with the LIVE IQA database and tested on the
TID2013 database. For testing, four distortion types (JPEG,
JP2K, WN, and BLUR) from the TID2013 database were
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(a) 10−4 (b) 10−3 (c) 10−2 (d) 10−1

Fig. 2: Examples of predicted sensitivity maps with various
TV regularization weights. (a) is distorted image, and (b)-(d)
are the predicted sensitivity maps.

Table 3: SRCC and PLCC comparison for each TV regular-
ization weight on the LIVE IQA database.

TV weight 0 10−4 10−3 10−2 10−1

SRCC 0.961 0.967 0.969 0.971 0.969
PLCC 0.963 0.967 0.967 0.972 0.970

Table 4: SRCC and PLCC comparison with and without the
reliability map.

Reliability LIVE IQA CSIQ
map SRCC PLCC SRCC PLCC
w/o 0.969 0.968 0.833 0.859
w/ 0.970 0.971 0.858 0.879

selected. The results are shown in Table 2, where DeepBQA
achieved a competitive SRCC. It can be concluded that Deep-
BQA performs well in terms of subjective score prediction,
and its performance does not depend on the database.

4.3. Ablation Study

We tested four weights (10−4, 10−3, 10−2, and 10−1) of the
TV regularization term. Fig. 2 shows the predicted sensi-
tivity maps according to the weight. When the weight was
very small (10−4), the overall sensitivity map tended to be
zeros, and only small regions had high values. As TV weight
increased, the distribution of the sensitivity maps tended to
be more uniform, as shown in (e) and (j). This phenomenon
also affected the prediction accuracy. The models with suffi-
cient magnitudes of weights (10−2 and 10−1) showed higher
SRCC, as shown in Table. 3. Too sparse a sensitivity map
could not generalize over the various database and distortion
types well.

In addition, we study the effect of the reliability map on
the LIVE IQA and CSIQ databases. The result is is reported
in Table. 4. On the LIVE IQA database, the performance gain
by using the reliability map was marginal. However, there
was a significant increase in the correlations on CSIQ.

5. PERCEPTUAL ERROR MAP ANALYSIS

The predicted sensitivity and perceptual error maps are shown
in Fig. 3. (a), (e), and (i) are distorted by JP2K, white noise,

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3: Examples of predicted sensitivity maps. (a), (e), and
(i) are distorted images with JP2K, white noise, and Gaussian
blur. (b), (f), and (j) are the reliability maps. (c), (g), and
(k) are the predicted sensitivity maps. (d), (h), and (l) are the
predicted perceptual error maps.

and Gaussian blur, respectively. The reliability maps empha-
sized high-frequency components, such as edges and complex
textures. In case of white noise, the pixels on the whole had a
similar reliability as shown in the second column. To analyze
DeepBQA, we observed the perceptual error map rather than
the sensitivity map. The role of the sensitivity map is tunning
the objective error map by multiplication, so that its value
does not provide intuitive interpretation. However, it is clear
that low values in the perceptual error map can be regarded
as perceptually distorted regions. When the image was dis-
torted by white noise, the texture regions were brighter than
the homogeneous regions, as shown in (n). For blurred im-
ages, textural regions were perceptually more distorted than
strong edges, as shown in (l).

6. CONCLUSION

In this paper, we described a deep CNN-based NR-IQA
framework called DeepBQA. Because of the lack of a training
database, applying a deep model to NR-IQA is a challenging
issue. In DeepBQA, an objective error map was used as an
intermediate regression target to avoid overfitting with the
limited database. To reflect the properties of the HVS, an
additional path was learned to generate the sensitivity map.
As a result, DeepBQA outperformed all benchmark NR-IQA
methods. By adding a TV constraint, sensitivity became less
sparse and prediction accuracy increased.
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