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ABSTRACT

Mask based statistical beamforming, where signal statistics for the
target and the interference gained from masking are used for beam-
forming, has shown great effectiveness in the two recent CHiME
challenges. This idea has sparked interest in the research commu-
nity and resulted in numerous proposed approaches based on the
idea. At the same time, the advent of voice controlled smart home
devices, such as Google Home and Amazon Alexa, has strengthened
the need for robust far-field automatic speech recognition. In this
paper, we evaluate if mask based beamforming can live up to the
expectations created by the CHiME challenges and provide similar
gains in a smart home scenario. To this extend, we pinpoint the main
differences between the scenarios, review the recent developments
and conduct extensive experiments on large scale data. These exper-
iments show that, while a 10% relative reduction of the word error
rate can be achieved, the gains are not as high as those seen in the
CHiME challenge. We also show that approaches where the front-
end and back-end is trained jointly do not reach the performance
level of their independently trained counterparts. On the plus side,
we see a 20% relative improvement for an evaluation set with cross-
talk.

Index Terms— Acoustic beamforming, multi-channel ASR,
noise robust ASR, smart home

1. INTRODUCTION

In the recent CHiME 4 challenge, all Top-5 systems used mask based
statistical beamforming for multi-channel feature enhancement1. Al-
though their exact implementations differ in the method used to es-
timate the time frequency (tf) masks or the beamforming criterion,
the underlying idea is the same: Given a tf mask, estimate the covari-
ance matrices for the target and noise signal and use those matrices
to obtain a beamforming vector. Apart from the performances this
approach demonstrated in the challenge, it has additional desirable
properties: It is independent of the microphone array (i.e. its geome-
try and the number of microphones) and it is robust to reverberation.
This sparked the interest of the research community and numerous
variants have been presented since. The performance of different
mask estimators, beamforming criterions as well as postfilters have
been evaluated [1, 2, 3, 4]. Joint optimization of the beamformer
front-end with its mask estimator and the acoustic model back-end
has been considered as well [5, 6, 7].

The previous work was done on CHiME [8] which has particular
properties:

∗work performed at Google
1http://spandh.dcs.shef.ac.uk/chime challenge/chime2016/results.html

1. All scenarios are recorded outside and thus the recordings
have little to no reverberation. It is known that beamform-
ers perform much better in the absence of reverberation [9].

2. Because every speaker holds the recording device (a tablet)
in more or less the same way, there is a strong prior on the
position of the speaker. This can be exploited for block-online
processing. E.g. [10] initializes the covariance matrices with
their mean on the training set.

3. The average duration of an utterance is long, especially if the
5 s of context allowed for the challenge is taken into account.
There are also no requirements on latency and an utterance
can be processed as a whole. Combined with a nearly static
speaker position, this allows for a good approximation of the
covariance matrices for each frequency.

4. Except for very few utterances recorded in the cafe setting,
there are no interfering speakers. The different spectral pat-
terns of speech and the occurring noise types make it easier to
separate the target speaker from the background noise. Again,
this helps to estimate the statistics required for the beamform-
ing operation.

5. The data available to train the acoustic model can be con-
sidered small by today’s standards. As a result, there is
a strong limitation on the noise robustness of the acoustic
model. Training on all six channels can only slightly mitigate
this problem as the microphone recordings are still highly
correlated. But the weaker the acoustic model, the higher is
the impact of pre-processing steps like beamforming on the
recognition performance.

In this work, we focus on a smart home scenario. Here, the sit-
uation is very different: The device can be placed freely in a room
with possibly high reverberation. This also means that there is no
informed prior on the initial speaker position. The queries to be rec-
ognized by the device are typically short and consist of only a few
words. These queries have to be processed with a limitation on la-
tency to provide an acceptable user experience. Operating in a home
environment, the number of possible background noise types is in-
finite and also includes competing speakers. To cope with all these
environmental influences, a large training corpus consisting of thou-
sands of hours of speech has been created. This speech corpus is
additionally augmented with noise streams taken from YouTube and
reverberated using real as well as simulated room impulse responses
(RIRs). This allows us to train a robust single-channel acoustic
model, capable of handling noise and reverberation scenarios.

This different environment is one of the reasons conclusions
about the utility of beamforming are different. While it has shown
great improvements for corpora such as CHiME, so far, implicitly
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learning fixed multi-channel filters within the structure of the acous-
tic model has delivered the best results on large smart home voice
search corpora [11, 12]. Another reason might be that these works
do not consider mask based beamforming.

This papers examines recent developments of mask based beam-
forming approaches in the context of a smart home scenario with its
properties described above. We recap the underlying ideas and re-
cent developments (Sec. 2). We then conduct extensive experiments
with the presented approaches (Sec. 4). We focus on a large aug-
mented voice search dataset (Sec. 3) to evaluate the utility of mask
based beamforming and compare the different proposed beamform-
ing criteria trained independently as well as jointly with the acoustic
model. We also investigate the influence of the number of micro-
phones and different mask targets. From these experiments we con-
clude that the achievable gains are much smaller compared to the
CHiME corpora and that the models should be trained separately
and not jointly (Sec. 5).

2. MASK BASED STATISTICAL BEAMFORMING

In our multi-channel scenario, the Short Time Fourier Transform
(STFT) representations of D microphone signals are gathered in a
vector Yf,t where t is the frame and f the frequency bin index. Un-
der the narrowband approximation, the vector is a superposition of
a speech component Xf,t and a noise component Nf,t which are
assumed to be independent:

Yf,t = Xf,t + Nf,t. (1)

The beamformer now aims to remove, or suppress the noise compo-
nent. This is done by filtering the observed signal with a beamform-
ing vector wf :

Ŝf,t = wH
fYf,t. (2)

Depending on the definition of the beamforming criterion, Ŝf,t is
either an estimate of the speech component as observed at a reference
microphone or an estimate of the source speech signal.

In this work we consider two different criterions for the beam-
forming vector. One maximizes the expected signal-to-noise ratio
(SNR) after the beamforming operation while the other minimizes
the mean squared error (MSE) between the beamformer output and
a reference channel.

2.1. GEV beamformer

The Generalized Eigenvalue (GEV) (or Max-SNR) beamformer
aims to maximize the output SNR of the beamforming operation
[13]:

w
(GEV)
f = argmax

wf

E
[
‖wH

fXf,t‖
2
]

E
[
‖wH

fNf,t‖2
] (3)

This equation is known as the generalized Rayleigh quotient
and the solution of this optimization problem is the eigenvector cor-
responding to the largest eigenvalue of the generalized eigenvalue
problem

ΦXX
f wf = λΦNN

f wf ,

where ΦXX
f = E

[
Xf,tXf,t

H
]

is the Cross-Power Spectral Density
(PSD) matrix of the speech signal and ΦNN

f = E
[
Nf,tNf,t

H
]

of
the noise signal respectively.

The solution to this problem is unique up to a multiplication
with a complex scalar. Since Eq. 3 is solved independently for each
frequency, this can also introduce arbitrary distortions. We compute
the solution by decomposing ΦNN

f with a Cholesky decomposition,
resulting in a similar regular eigenvalue problem with a Hermitian
matrix. To arrive at the solution of the generalized eigenvalue prob-
lem, the resulting eigenvector is projected back with Lf

- H where
LfL

H
f = ΦNN

f . The eigenvector itself is scaled to unit norm so the
scaling is determined by the noise PSD matrix. As noted in [2], this
leads to a constant residual noise power for all frequencies, i.e.

E
[
‖w(GEV)

f

H
Nf,t‖2

]
= 1, ∀f.

So in practice the scaling is not arbitrary but well defined by
the noise PSD matrix. Note that this still introduces distortions but
these distortions can benefit the recognition. Due to the projection
of the unit norm eigenvector frequencies with high noise energy
are suppressed while those with low noise energy are emphasized.
Nonetheless, it can also degrade the performance since such distor-
tions do not match the expectations of the acoustic model back-end.
We therefore optionally scale the noise PSD as follows:

˜ΦNN
f =

ΦNN
f

tr{ΦNN
f }

2.2. MWF

The Multi-channel Wiener Filter (MWF) aims to minimize the dis-
tance between the beamformer output and the speech signal as re-
ceived by a reference microphone when no noise is present. Assum-
ing noise and speech are uncorrelated and introducing a trade-off
factor µ, this is expressed by

w
(MWF)
f = min

wf
E
[
‖wH

fXf,t −Xref
f,t‖2

]
+ µE

[
‖wH

fNf,t‖2
]
.

The solution to this optimization problem is given by

w
(MWF)
f =

ΦNN
f

- 1
ΦXX
f

µ+ tr
{

ΦNN
f

- 1
ΦXX
f

}uref , (4)

with uref being a one-hot vector selecting the reference microphone
and ΦXX

f = φXXafa
H
f a Rank-1 matrix with the Acoustic Transfer

Function (ATF) af [14]. The Rank-1 property can also be enforced,
leading to an improved performance [2]. Depending on the choice of
µ, the formulation either resembles the well-known Minimum Vari-
ance Distortionless Response (MVDR) beamformer (µ → 0), the
minimum MSE solution (µ = 1) or a trade-off. It is also possi-
ble to choose a frequency dependent value for µ. Especially setting

µf =
√
φXXf ρf − ρf with ρf = tr

{
ΦNN
f

- 1
ΦXX
f

}
yields the

same constant value for the residual noise power along frequencies
as the GEV beamformer [2].
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Table 1: Network configuration for mask estimation

Units Type Non-Linearity pdropout

L1 512 (B)LSTM Tanh 0.5

L2 1024 FF ReLU 0.5

L3 1024 FF ReLU 0.5

L4 257 + 257 FF Sigmoid 0.0

2.3. Mask estimator

The beamformer variants described above rely on the knowledge of
the frequency-dependent PSD matrices of the speech and noise sig-
nal respectively. These are estimated from the observed signal with
a mask indicating for each tf-bin if the speech or the noise is pre-
dominant:

Φνν
f =

1

Z

∑
t

Mν
f,tYf,tY

H
f,t (5)

Here, Z is a normalization constant, e.g.
∑
tM

ν
f,t and ν is either X

or N.
The masks are estimated with a neural network separately for

speech and noise. In this work, we employ two different network
architectures (see Table 1): One bi-directional network and one op-
erating frame-by-frame. The former is inspired by the architecture
used in [15]. The later replaces the bi-directional Long Short-Term
Memory (BLSTM) with an LSTM and also uses a different kind of
normalization. While the BLSTM network normalizes, scales and
shifts after each linear transformation (i.e. before applying the non-
linearity), the LSTM network only normalizes the mean after the
linear transformation of the LSTM layer using cumulative statistics
instead of utterance level statistics.

Both networks are trained with a cross-entropy criterion. Using
simulated data (see Sec. 3), we have oracle information to calculate
target masks for the training. For those, we consider three different
options:

1. As in [15] we compute ideal-binary masks with different
thresholds for the speech (10 dB) and noise (−5 dB). The
masks do not sum to one here and the speech mask is sparse
as we only want to include tf-bins that clearly are domi-
nated by speech in the calculation of the PSD matrices. The
resulting masks are binary.

2. Ratio masks which have shown to perform well and can also
be used as a smooth postfilter [3].

3. We only consider those tf-bins as dominated by speech, where
the instantaneous power is above the average power of the
signal. This, again, yields a very sparse speech mask.

The mask estimator operates on each microphone channel indi-
vidually and the masks are pooled with a median operation resulting
in a single mask for speech and noise to be used in Eq. 5. To avoid a
transformation back to the time-domain the mask estimator as well
as the beamformer operates in the spectral domain with a frame size
of 25ms and a frame shift of 10ms.

2.4. Implementation

All beamformer models have been implemented in Tensorflow [16]
with support for backpropagation through the respective optimiza-

tion criterion [17]. This allowed us to combine the front-end (beam-
former) with the back-end (acoustic model) into one model with a
complex-valued multi-channel input and integrated statistical beam-
forming. The resulting model can be trained end-to-end (E2E) with
any speech/phoneme classification criterion [7].

However, the training of such a model can quickly become un-
stable. Especially at the beginning of the training, it might happen
that only a few tf-bins are considered as noise for some frequencies.
Then, due to numerical issues, the noise PSD might not be posi-
tive definite as required for the Cholesky decomposition. We there-
fore enforce this property by decomposing the noise PSD matrix and
shifting its eigenvalues to the positive regime if required. This shift
is ignored during the backpropagation pass.

2.5. Acoustic model

The acoustic model consists of 5 Long Short-Term Memory (LSTM)
layers with 768 units per layer. It is trained to classify the 8,192
context-dependent phonemes [18] with a cross-entropy criterion
without any further sequential fine-tuning. We stack three consecu-
tive frames so the model operates at a reduced framerate of 33Hz
and also delay the targets for 150ms [19]. This model has proven to
be a strong baseline internally.

3. DATA

Our training data set consists of 250 k voice search query utterances
translating into roughly 150 hours of speech. The training set is
anonymized and hand-transcribed, and is representative of Googles
voice search traffic. The data is corrupted using a room simulator
adding varying degrees of noise and reverberation. The speaker is
placed in one of 100 sampled room configurations with T60 times
ranging from 400ms to 900ms with an average of roughly 600ms.
The distance between the speaker and the circular array with 8 mi-
crophones ranges from 1m to 4m. The radius of the circular array
is 7 cm. Noise is added by placing 0 to 3 noise source into the same
room. The noise signals are extracted from YouTube and include
samples with music and ambient noise. The final SNR ranges from
0 dB to 20 dB with an average of about 12 dB.

For evaluation we use 100 k utterances and corrupt them in the
same way as described above. The characteristics are sampled from
the same distributions but we ensure that the samples do not match
with one from the training set. We also create a second evaluation set
that uses speech samples from YouTube as noise source to simulate
a multi-talker environment.

4. EXPERIMENTAL RESULTS

The word error rate (WER) results for the different beamformer cri-
terions are shown in Tbl. 2. Both criterions are able to improve the
recognition performance over the single channel baseline by about
10% relative. This is already the case if only 2 channels are used
(microphone 1 and 5 of the circular array), especially for the MWF.
Adding two more microphones leads to an improvement for the GEV
but the MWF does not profit from the additional channel. Increasing
the number to eight brings no further gains for the GEV and the per-
formance of the MWF degrades. The reason for this is probably the
close microphone spacing [20]. Overall, the difference between the
GEV and the MWF is marginal and depends on the number of mi-
crophones used as well as their respective parameters/normalization.
Note that the table only shows the results for the best configuration.

6724



Table 2: Comparison between GEV and MWF for different numbers
of microphones with and without cross-talk (CT). For each scenario
the parameters yielding the lowest WER have been chosen.

1 ch 2 ch 4 ch 8 ch

GEV
30.6

28.4 27.3 27.4

MWF 27.7 27.7 29.3

GEV CT
34.8

29.6 29.1 28.6

MWF CT 29.6 29.6 32.1

Table 3: Comparison of mask targets averaged for GEV and MWF.

IBM RATIO AVG

noisy 27.8 29.3 27.7

CT 30.0 31.5 29.6

In general, we found that for the GEV the best results are
achieved without any normalization applied to the noise PSD or
the beamforming vector itself. For the MWF, we found that it is
beneficial to approximate the speech PSD matrix with a Rank-1
matrix but without considering the noise matrix (see Sec 2.2 and
[2]). The generalized decomposition leads to unstable behaviour for
some utterances, resulting in overall worse performance. No clear
statement can be made about the choice of the trade-off parameter.
Sometimes the frequency dependent one worked better, sometimes
setting it to 0 (MVDR) yielded better results. There was also no
noticeable difference between the two mask estimators.

Further investigations shows that most gains are achieved for
low SNR and/or high T60 conditions. Especially the good perfor-
mance for high reverberation was not expected since the narrowband
assumptions is violated in those cases and beamformers are said to
perform worse in those conditions.

For the evaluation set with cross-talk (CT), the gains achieved
by using a multi-channel input are larger, resulting in a relative re-
duction of about 20%. The MWF shows the same behaviour as
described above regarding the number of microphones. Using two
or four makes no difference but changing to eight deteriorates the
recognition. The GEV can profit from an increasing number of mi-
crophones and achieves slightly better results overall in this scenario.
Neither the mask estimator, nor the acoustic model are trained on
cross-talk. However, if the mask estimator confuses some tf-bins it
does not hurt the estimation of the PSD matrices too much as long as
the majority is correct for a given frequency. In contrast, the acoustic
model is more sensitive to interferences from another speaker.

The results for the different mask targets are shown in Tbl. 3.
From those, we conclude that the choice of the target is not very
important. One tendency that can be seen is that it is beneficial to use
sparse masks, i.e. only relying on a few but reliable tf-bins yields a
better estimate for the PSD matrices. Consequently, the ratio mask
performs slightly worse compared to the other two.

The results for the E2E training are shown in Tbl. 4. Concentrat-
ing on the results for E2E GEV & E2E GEV CT first, we can make
two observations: First, the results are worse compared to the one
with independent models and even compared to the baseline. Sec-
ond, the results now clearly depend on the number of microphones.
Regarding the first point, our initial guess was that the unreliable

acoustic model at the beginning of the training might lead to incor-
rect gradients for the mask estimator pushing it into a direction it
can never recover from. As a consequence, we additionally used
the cross-entropy mask loss (with IBM masks) as an auxiliary loss
(+mask). This lead to a significant performance improvement but we
were unable to match the WERs achieved with separate models even
though the masks produced by the model showed the same quality
in terms of cross-entropy loss. As a result of the second observation,
we started to sample the number of microphones uniformly during
the training (+sampling). As an interesting result, the model now
achieves the best performance using four microphones. From these
experiments we conclude that training the model jointly does not
yield the same (or even better) performance than training each com-
ponent individually. While our initial guess in [7] was that this might
be a matter of available data, we can reject this hypothesis. Instead,
we hypothesize that, since the masks and thus the signal enhance-
ment were comparable, training both components jointly leads to a
weaker acoustic model and an overfitting to the specific characteris-
tics of the beamformer output, i.e. the same effect observed when
training the acoustic model on beamformed features [21].

Table 4: Results for the E2E approaches.

2 ch 4 ch 8 ch

E2E GEV 42.1 38.6 37.8

E2E GEV + mask 37.3 31.8 30.4

E2E MWF + mask 40.3 35.0 33.0

E2E GEV + mask + sampling 39.4 34.9 36.1

E2E GEV CT 50.2 44.8 41.0

E2E GEV + mask CT 41.6 34.6 33.1

E2E MWF + mask CT 45.8 39.9 41.3

E2E GEV + mask + sampling CT 45.9 39.9 37.5

5. CONCLUSIONS

This paper evaluates various mask based beamforming variants for
a smart home scenario on large scale data. The results show that we
can achieve a 10% relative gain over a single-channel baseline by
using just two microphones. The gain is even larger when cross-talk
is considered as a possible noise source (20% relative). Increasing
the number of microphones further yields only small gains with the
chosen geometry. We also evaluated E2E approaches but found that
those cannot reach the performance of their independently trained
counterparts, presumably mainly due to a weaker acoustic model.
Taking into account the flexibility independently trained models pro-
vide and the difficulties arising during the training of the E2E mod-
els, it is hard to find an advantage for the latter. Overall, we can
conclude that the mask based beamformer can provide gains for the
scenario in question. However, these are not as high as the ones seen
on the CHiME corpora. We think the main reason for this is that an
acoustic model trained on 150 hours of data is more robust than one
trained on roughly 18 hours. One thing we did not take into account
is the latency constraint. While both, the (LSTM) mask estimator
used as well as the acoustic model can operate on a frame-by-frame
basis, the statistics are still accumulated over the whole utterance.
Initial experiments on block-wise processing showed that it is hard
to maintain the gains achieved here. Optimizing this is an open ques-
tion for future research.

6725



6. REFERENCES

[1] Hakan Erdogan, John Hershey, Shinji Watanabe, Michael
Mandel, and Jonathan Le Roux, “Improved MVDR beamform-
ing using single-channel mask prediction networks,” in Pro-
ceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH, Sep 2016.

[2] Ziteng Wang, Emmanuel Vincent, Romain Serizel, and
Yonghong Yan, “Rank-1 Constrained Multichannel Wiener
Filter for Speech Recognition in Noisy Environments,” Jul
2017.

[3] Xueliang Zhang, Zhong Qiu Wang, and DeLiang Wang, “A
speech enhancement algorithm by iterating single- and multi-
microphone processing and its application to robust ASR,” in
2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Mar 2017.

[4] Lukas Pfeifenberger, Matthias Zohrer, and Franz Pernkopf,
“DNN-based speech mask estimation for eigenvector beam-
forming,” in 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Mar 2017.

[5] Tsubasa Ochiai, Shinji Watanabe, Takaaki Hori, John R. Her-
shey, and Xiong Xiao, “Unified architecture for multichan-
nel end-to-end speech recognition with neural beamforming,”
IEEE Journal of Selected Topics in Signal Processing, vol. 11,
no. 8, pp. 1274–1288, Dec 2017.

[6] Xiong Xiao, Shengkui Zhao, Douglas L. Jones, Eng Siong
Chng, and Haizhou Li, “On time-frequency mask estima-
tion for MVDR beamforming with application in robust speech
recognition,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Mar 2017.

[7] Jahn Heymann, Lukas Drude, Christoph Boeddeker, Patrick
Hanebrink, and Reinhold Haeb-Umbach, “Beamnet: End-to-
end training of a beamformer-supported multi-channel ASR
system,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Mar 2017.

[8] Emmanuel Vincent, Shinji Watanabe, Aditya Arie Nugraha,
Jon Barker, and Ricard Marxer, “An analysis of environment,
microphone and data simulation mismatches in robust speech
recognition,” Comput. Speech Lang., vol. 46, no. C, Nov. 2017.

[9] Keisuke Kinoshita, Marc Delcroix, Sharon Gannot,
Emanuël A. P. Habets, Reinhold Haeb-Umbach, Walter
Kellermann, Volker Leutnant, Roland Maas, Tomohiro
Nakatani, Bhiksha Raj, Armin Sehr, and Takuya Yoshioka, “A
summary of the reverb challenge: state-of-the-art and remain-
ing challenges in reverberant speech processing research,”
EURASIP Journal on Advances in Signal Processing, 2016.

[10] Takuya Higuchi, Nobutaka Ito, Takuya Yoshioka, and Tomo-
hiro Nakatani, “Robust MVDR beamforming using time-
frequency masks for online/offline ASR in noise,” in 2016
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), Mar 2016.

[11] Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Arun
Narayanan, Michiel Bacchiani, and Andrew, “Speaker loca-
tion and microphone spacing invariant acoustic modeling from
raw multichannel waveforms,” in 2015 IEEE Workshop on Au-
tomatic Speech Recognition and Understanding (ASRU), Dec
2015.

[12] Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Arun
Narayanan, and Michiel Bacchiani, “Factored spatial and spec-
tral multichannel raw waveform CLDNNs,” in 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Mar 2016.

[13] E. Warsitz and R. Haeb-Umbach, “Blind Acoustic Beamform-
ing based on Generalized Eigenvalue Decomposition,” IEEE
Transactions on Audio, Speech, and Language Processing, vol.
15, 2007.

[14] Mehrez Souden, Jacob Benesty, and Sofine Affes, “On Op-
timal Frequency-Domain Multichannel Linear Filtering for
Noise Reduction,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 18, no. 2, Feb 2010.

[15] Jahn Heymann, Lukas Drude, and Reinhold Haeb-Umbach,
“Neural network based spectral mask estimation for acoustic
beamforming,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Mar 2016.

[16] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
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