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ABSTRACT

We present a neural network based approach to two-channel
beamforming. First, single- and cross-channel spectral features are
extracted to form a feature map for each utterance. A large neural
network that is the concatenation of a convolution neural network
(CNN), long short-term memory recurrent neural network (LSTM-
RNN) and deep neural network (DNN) is then employed to estimate
frame-level speech and noise masks. Later, these predicted masks
are used to compute cross-power spectral density (CPSD) matrices
which are used to estimate the minimum variance distortion-less re-
sponse (MVDR) beamformer coefficients. In the end, a DNN is
trained to optimize the phase in the estimated steering vectors to
make it robust for reverberant conditions. We compare our methods
with two state-of-the-art two-channel speech enhancement systems,
i.e., time-frequency masking and masking-based beamforming. Re-
sults show the proposed method leads to 21% relative improvement
in word error rate (WER) over other systems.

Index Terms— Two-channel speech enhancement, MVDR
beamforming, steering vector, neural networks

1. INTRODUCTION

Automatic speech recognition (ASR) has been growing rapidly in
recent years due to the introduction of deep neural networks (DNNs)
for acoustic modeling (AM) and language modeling (LM). How-
ever, it is still very challenging to recognize speech from the far field,
where speech signal is severely corrupted by noise and reverberation.
Given multi-channel recordings, many speech enhancement methods
have been proposed as front-end processing for far-field ASR, and
they lead to substantial performance gain over unprocessed speech
[8, 11, 14, 19]. This paper is concerned with far-field speech en-
hancement when only two-channel recordings are available.
Conventional two-channel speech enhancement methods can be
broadly categorized into two groups: non-linear and linear. Non-
linear techniques suppress noise non-linearly based on the statistical
information of speech or noise. One of the most popular non-linear
approaches is time-frequency (T-F) masking [27]. In T-F mask-
ing, cross-channel features, e.g., level differences, time differences,
cross-correlation and phase differences, are first computed at each T-
F unit of the input utterance. A T-F level binary or ratio mask that at-
tenuates noise and retains speech is then estimated from the features,
using thresholding [1, 14], DNNs [5, 13, 18], or clustering [9, 23].
T-F masking based approaches work well in terms of noise suppres-
sion, but they may introduce artifacts in the processed speech, which
degrades the performance of ASR with multi-condition DNN-AMs.
Two-channel linear approaches are usually based on beamform-
ing, where complex-valued linear filters are applied to multi-channel
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input, and all the channels are then added together to enhance the
target speech. As one of the most widely-used beamforming tech-
niques, minimum variance distortion-less response (MVDR) beam-
forming tries to minimize the power of the beamformed signal, while
keeping unity gain at the look direction. To obtain MVDR filter coef-
ficients [2, 7], we need to estimate the spatial statistics of the target
speech and noise, including steering vectors of the look direction
which can be estimated from speech cross-power spectral density
(CPSD) matrices, and noise CPSD matrices.

Recently, much effort has been made to combine T-F masking
with beamforming [4, 8, 9, 19, 28]. The general idea is to estimate
speech and noise spectral masks, and apply them to the noisy speech
so that spatial statistics and beamforming coefficients can be eas-
ily derived. In [9], a complex Gaussian mixture model (CGMM) is
built to estimate masks for noise. Speech and noise CPSD matrices
are then estimated from the masked signals, and steering vectors are
estimated using the principal eigenvectors of speech CPSD matri-
ces. Finally, the enhanced speech is obtained using MVDR beam-
forming. In [8], Heymann et al. propose to use short time Fourier
transform (STFT) features and bidirectional long short-term memory
(BLSTM) recurrent neural network (RNN) to estimate speech and
noise masks for each channel. A median mask across all the chan-
nels is then obtained for computation of beamforming coefficients.
In [28], Xiao et al. extend Heymann et al.’s approach by including
ASR cost function and iterative processing in mask estimation. In
[19], BLSTM based masks are utilized to initialize spatial clustering
based masks, leading to improved generalization in mask estimation.
To sum up, masking based beamforming does not require the prior
knowledge of microphone array geometry, and has been shown to be
robust in real noisy environments.

In this paper, we extend Heymann et al.’s masking based beam-
forming [8] for two-microphone setup in three major aspects. First,
to better utilize information in the two channels for mask estima-
tion, we stack two-channel STFT as a T-F feature map. A large neu-
ral network concatenated by a convolutional neural network (CNN),
BLSTM and DNN takes the feature map as input to predict the
mean masks of the two channels. Second, we include several cross-
channel features to enrich the feature map. Lastly, we observe that
the steering vectors estimated by principal eigenvectors of speech
CPSD matrices fail to match the target look direction if speech is
severely corrupted by reverberation. To address this issue, we use
estimated steering vectors and masks as features, and train a DNN to
optimize the phase in the estimated steering vector.

In the remainder of this paper, after reviewing existing masking-
based MVDR beamforming in Section 2, the proposed method is
described in Section 3. In Section 4, we present experimental results
and comparisons. A conclusion is given in Section 5.
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2. REVIEW OF MASKING BASED MVDR
BEAMFORMING

In this section, we briefly describe conventional MVDR beamform-
ing and Heymann et al.’s masking based MVDR beamforming.

Noisy and reverberant speech signals received at the two micro-
phones are denoted as:

)/:"L(th):h7”(f)S(t7f)+N””(t7f) (1)
:Xm(t7f)+Nm(t7f)7 fOI' m:172 (2)

with S(t, f) denoting the clean speech STFT at time frame ¢ and
frequency channel f, h.,(f) denoting the room impulse response
between the speaker and the m** microphone, Yy, (¢, f), X (t, f)
and Ny, (¢, f) denoting the STFT of noisy reverberant speech, rever-
berant speech and noise received at the the m‘" microphone. The
variables can also be written in vector notation by omitting the mi-
crophone index: Y (¢, f), X(¢, f), N(¢, f) and h(f).

The goal of MVDR beamforming is to recover the clean speech
with a linear filter w(f),

St f) =w"(f)Y( f) 3)

such that the energy of beamformed signal is minimized, and unity
gain is maintained at the look direction. The close form solution to
the optimization problem is:

w(f) — 2R A()
a(f) @y (H)d(f)
where d(f) is the steering vector of the microphone array, and
Pnn(f) is the noise CPSD matrix.
Conventionally, the steering vector can be estimated using the
time difference of arrival (TDOA) between the two microphones [2].
Taking the first microphone as the reference microphone, we have:

d(f)=[1 e 77 (5)

4

where 7 is the TDOA. Noise CPSD matrix can be calculated on
noise-only frames estimated by voice activity detection (VAD).
Unlike conventional methods, masking based MVDR beam-
forming [8] first estimates speech and noise masks of the mixture
with BLSTM, and then calculates MVDR coefficients using masked
signals. The details are described in the following two subsections.

2.1. BLSTM based Mask Estimation

In [8], the mask estimator consists of multiple BLSTM-RNNs with
shared weights, one for each channel. The input feature of each
BLSTM is a single frame of 513-dimensional STFT magnitude of
one channel, with 16-kHz sampling rate, 64-ms frame size, 16-ms
frame shift, and 1024 FFT size.

The target binary masks for speech and noise are defined as:

1, if KDL S o),

IBMx(t, f) = Dl 6)
0, otherwise.
1, if BBDL gt ()]

IBMx(t, f) = NS @)
0, otherwise.

where thx (f) and thx(f) are thresholds for speech and noise masks
at each frequency bin.

The BLSTM-RNN consists of three hidden layers: a 256-unit
BLSTM layer followed by two 513-unit feedforward layers with the

Mean Mask of|
Two Channels

Fig. 1: Diagram of the CLDNN based mask estimator.

ReLU activation function [6]. The output layer has 1026 sigmoid
units estimating frame-level speech and noise masks simultaneously.
Batch normalization [12] and dropout [10] are applied throughout
the network. The cross-entropy cost function, utterance-level back-
propagation through time, and Adam optimization algorithm [15] are
used during training.

After estimating masks at each channel, a median speech mask
and noise mask of all the channels, Mx(¢, f) and M(t, f), are ob-
tained for beamforming coefficients computation.

2.2. MVDR Coefficients Computation

The speech and noise CPSD matrices can be calculated as:

L S Myt Y ()Y )
Z?:l Mv(tv f )

where V. € {X,N}. The steering vector can be estimated as the
principal component of the estimated speech CPSD matrix:

d(f) = P{®xx(/f)} ©

In the end, we calculate MVDR filter coefficients using Eq. (4)
and apply the filters to two-channel recordings to get the enhanced
speech.

2w (f) ®)

3. PROPOSED SYSTEM

Although Heymann et al.’s masking based beamforming [8] works
well for realistic noise and can be readily applied to 2-microphone
setup, it still has limitations: it does not make full use of multi-
channel information and does not work well in reverberation. In
this section, we propose three extensions to [8] to improve its per-
formance for noisy and reverberant speech.

3.1. Extension One: Dual-channel Neural Network

The mask estimator in [8] only takes single-channel STFT as input,
which is suboptimal as there is far richer information in two-channel
inputs. To address this issue, we propose to stack two-channel
STFT coefficients as a feature map and use a CNN-BLSTM-DNN
(CLDNN) based neural network to predict the mean ideal masks of
the two channels. The diagram of network is given in Fig. 1.
CLDNN based acoustic model has been explored in [24], and
has been shown to outperform LSTM based AM as it takes advan-
tage of the complementarity of different neural networks. In this
paper, the CNN part of the CLDNN consists of two convolutional
layers and a dimensionality reduction layer. The input to the first
convolutional layer is stacked 2-channel STFT magnitude with a
context window size of 25 frames, 12 frames before and 12 frames
after the current frame. The two convolutional layers both have 32
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feature maps. A 9x9 T-F filter is used for the first convolutional
layer, followed by a 4x3 filter for the second convolutional layer.
The pooling strategy is non-overlapping max pooling in frequency
with a pooling size of 3, and pooling is only performed for the first
hidden layer. After the second convolutional layer, a 513-unit linear
layer is employed to reduce the dimensionality of the feature map.
Batch normalization is included in all CNN layers. All other details,
including the BLSTM and DNN part of the CLDNN, and training
recipes, follow those in Section 2.1.

3.2. Extension Two: Cross-channel Features

To fully make use of information in all channels, more cross-channel
features should be added to the input of the mask estimator. Many
studies have investigated cross-channel features, e.g., level differ-
ences, time differences, cross-correlation and phase differences, for
two-channel T-F masking [1, 13, 14] and direction of arrival esti-
mation [17]. However, since cross-correlation based features work
poorly on close microphone distances, we decide to use phase dif-
ferences and CPSD as cross-channel features for mask estimation.

The phase difference between the two channels is computed as:
PD(t, f) = o(Yi(t, f)Y3'(t, f)), where ¢ denotes the phase of a
complex number. We also include the cosine value of phase differ-
ence CPD(t, f) in the feature as a smoother version of PD(t, f).
Phase difference based features are useful for separating sources
from different directions in less reverberant conditions.

CPSD based cross-channel features are computed as:

RCPSD(t, f) = log(abs(real(Yi (¢, £)Y3'(t, £)))) (10
ICPSD(t, f) = log(abs(imag(Yi(t, /)Y (t, )  (1D)

where RC'PSD and ICPSD correspond to the real and imaginary
part of CPSD, respectively. We apply the absolute and logarithm
operation to compress the dynamic range of both features. Since the
imaginary part of ideal diffuse noise CPSD is always close to 0 [22],
ICPSD tends to have larger values at speech-dominant T-F units
in diffuse noise, which makes it very effective for separating speech
from diffuse noise.

All proposed cross-channel features have the same dimension
as single-channel STFT, thus can be readily stacked into the feature
map. The final feature map of the CLDNN has a depth of 6.

3.3. Extension Three: Post-Processing for Steering Vectors

In conventional TDOA based steering vectors (see Eq. (5)), the
phase difference between the two channels ¢(d2(f)/d1(f)) =
—27 f7 is proportional to the frequency index and TDOA. On the
other hand, steering vectors in masking based MVDR [8] correspond
to the principal components of speech CPSD matrices.

In Fig. 2, we compare ¢(d2(f)/d1(f)) in TDOA based steer-
ing vectors (Eq. (5)) and PCA based steering vectors (Eq. (9)) in
several different scenarios. The horizontal axis corresponds to fre-
quency bins, and the vertical axis corresponds to phase difference.
The TDOA based steering vectors in all subfigures are calculated us-
ing the oracle TDOA. If clean anechoic speech arrived at each chan-
nel is used to compute PCA based steering vector, ¢(d2(f)/d1(f))
estimated by the two approaches almost perfectly matches, as shown
in Fig. 2(a). If ideal-binary-masked anechoic noisy speech is used
for the PCA based method, the phase differences by the two ap-
proaches become a little different, but the gap is still very small as
in Fig. 2(b). However, as shown in Fig. 2(c) and 2(d), if reverberant
speech is used instead, the resulting ¢ (dz2(f)/d1(f)) in PCA based
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Fig. 2: Phase difference between the two channels in steering vec-
tors: (a) PCA based steering vectors estimated from clean speech.
(b) PCA based steering vectors estimated from ideal-binary-masked
noisy anechoic speech (-5 dB AC noise). (c) PCA based steering
vectors estimated from reverberant speech (400 ms 7Tg0). (d) PCA
based steering vectors estimated from ideal-binary-masked noisy re-
verberant speech (-5 dB AC noise, 400 ms Tso).

steering vectors starts to deviate a lot from that in TDOA based steer-
ing vectors, in other words, the resulting PCA based steering vector
does not match the desired look direction anymore.

DNN based direction of arrival estimation has been extensively
explored recently. Some studies analyze frequency-domain features
[3,25], while some use T-F masking as front-end preprocessing [20].
Inspired by these studies, we propose to use a DNN to predict the
TDOA, and fix the scattered phase difference in PCA based steer-
ing vector accordingly. Two features are used in the DNN. The first
is the original ¢(d2(f)/d1(f)) calculated from PCA based steer-
ing vector. The second is Z;‘rzl Mx(t, f), which corresponds to the
relative power of speech in each frequency bin. We normalize the
two features, and concatenate them to get a 1026-dimensional fea-
ture vector for each utterance. There are two hidden layers in the
DNN, each with 80 ReLU units. The output of the DNN estimates
the oracle TDOA of the speech. Based on the distance between the
two microphones, we linearly discretize all possible TDOAs into 30
classes, thus a 30-unit softmax output layer is used. During test, the
estimated TDOA T is given by the inner product of softmax outputs
and mean TDOAs of each class.

After the estimating 7, we keep the absolute value of PCA based
steering vectors |dq(f)| and |d2(f)|, and only change their corre-
sponding phase to ¢(d1(f)) = 1 and ¢(d2(f)) = —27f7. The
resulting steering vector is then used to compute filter coefficients.
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Table 1: WER comparison (%) on the simulated data set.

Speech Enhancement Development  Evaluation
Unprocessed Channel 1 35.84 41.31
T-F Masking 31.72 38.39
Masking based MVDR 24.69 30.06
Extension 1 21.10 25.16
Extension 142 20.58 24.19
Extension 1+2+3 19.00 23.67
Extension 1+2+QOracle 18.59 21.63

TDOA based Steering Vector
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Fig. 3: WER comparison in terms of noise type.
4. EVALUATION RESULTS AND COMPARISONS

To evaluate the proposed methods in very noisy and reverberant
conditions, we create a simulated corpus based on the CHiME-4
dataset [26]. There are 3 subsets in the corpus, namely training,
development and evaluation set. 7138, 100, and 100 clean utter-
ances respectively are to used to create mixtures in each subset. All
the clean utterances are from the clean Wall Street Journal record-
ings in CHIME-4’s simulated data. We use the fast image-source
method [16] to simulate room impulse response. The room dimen-
sion, microphone-array location, speaker location and noise loca-
tion are randomly generated for each utterance in the corpus. The
distance between the two microphones is set to 2.2 cm to prevent
aliasing and phase wrapping. Four types of noise are used, namely
AC (ACYV), babble (BAB), dish washer (DIS) and vacuum cleaner
(VAC), with the first two as diffuse noise and the other two as point
noise. In the training set, each clean utterance is mixed with a ran-
dom noise at a random signal to noise ratio (SNR) in -5, 0, 5 dB, and
at a random 7o in 200 and 400 ms. In the development and evalu-
ation set, each clean utterance is systematically mixed with 4 noise
types at all SNRs in -5, 0, 5 dB, and all 750 in 200 and 400 ms. In
total, we have 7138 simulated mixtures in the training set, and 2400
simulated mixtures in the development and evaluation set, each.
The speech recognizer used in this paper follows the CHiME-4
ASR baseline in Kaldi [21], i.e., a DNN acoustic model and a RNN
language model in addition to a 5-gram language model. The DNN-
AM is trained using the first-channel mixtures in the training set.
‘We compare the proposed speech enhancement methods with T-
F masking and masking based MVDR [8]. For T-F masking, the fea-
ture map and CLDNN in Section 3 are used to predict a soft speech
mask. The estimated mask is then directly applied to noisy STFT.
For masking based MVDR, we implement Heymann et al.’s system
[8] and match their reported results on CHiME-4. The network is
then retrained for the new data set. Table 1 summarizes the WER ob-
tained in the experiments. Each extension to masking based MVDR
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Fig. 4: WER comparison in terms of 7go.
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Fig. 5: WER comparison in terms of SNR.

incrementally improve the ASR performance on both development
and evaluation set. The final system (extension 1+2+3) leads to more
than 21% of WER reduction comparing with baseline approaches.
In addition, we combine the first two extensions with oracle TDOA
based steering vector, and report its WER in the last row. Results
indicate that extension 3 substantially reduces the performance gap
between PCA based and oracle TDOA based steering vectors.

Fig. 3, 4 and 5 compare the proposed methods with Heymann
et al.’s masking based MVDR in terms of different noise types, Ts0s
and SNRs. As observed in the figures, the proposed extensions sys-
tematically and incrementally reduce WER in almost all noise types
and T0s. The largest improvement comes from diffuse babble noise,
where WER is cut by more than half. WER slightly increases for
vacuum cleaner noise in the evaluation set when extension 3 is em-
ployed, probably because the noise is very broadband so that the
derived PCA based steering vector is too noisy to make an accurate
TDOA estimation. In Fig. 5, it is shown that the proposed extensions
work especially well for very low SNRs, and match the baseline sys-
tem in high-SNR conditions.

5. CONCLUSION

We have proposed three extensions, namely dual-channel neural net-
works, cross-channel features and steering vector post-processing,
for masking based MVDR beamforming. Experimental results
show that the proposed two-channel speech enhancement algorithm
greatly improves ASR performance. It should be mentioned that
the proposed system only includes linear beamforming. Non-linear
masking based approaches can be utilized as post-filters to further
reduce the residual noise in the beamformed signal.
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