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ABSTRACT

In this paper, we present a new control mechanism for LCMV beam-
forming. Application of the LCMV beamformer to speaker separa-
tion tasks requires accurate estimates of its building blocks, e.g. the
noise spatial cross-power spectral density (cPSD) matrix and the re-
lative transfer function (RTF) of all sources of interest. An accurate
classification of the input frames to various speaker activity patterns
can facilitate such an estimation procedure. We propose a DNN-
based concurrent speakers detector (CSD) to classify the noisy fra-
mes. The CSD, trained in a supervised manner using a DNN, clas-
sifies noisy frames into three classes: 1) all speakers are inactive -
used for estimating the noise spatial cPSD matrix; 2) a single spea-
ker is active - used for estimating the RTF of the active speaker; and
3) more than one speaker is active - discarded for estimation pur-
poses. Finally, using the estimated blocks, the LCMV beamformer
is constructed and applied for extracting the desired speaker from a
noisy mixture of speakers.

Index Terms— DNN, multi-speaker detector, LCMV beamfor-
mer

1. INTRODUCTION

In recent years we have witnessed an increasing research interest in
multi-microphone speech processing due to the rapid technological
advances, most notable the introduction of smart assistants for home
environment. Adverse acoustic environments are characterized by
noise, reverberation and competing speakers. Separating the desired
speaker from a mixture of several speakers, while minimizing the
noise power, as well as dereverberating the desired source, is there-
fore a major challenge in the field. A plethora of methods for speaker
separation and speech enhancement using microphone arrays can be
found in [1, 2].

In this work, we focus on linearly constrained minimum vari-
ance (LCMV) beamforming for speaker separation. The LCMV-
beamformer (BF) was successfully applied in speech enhancement
tasks with multiple signals of interest [3]. The LCMV criterion mi-
nimizes the noise power at the BF output while satisfying a set of li-
near constrains, such that the desired source is maintained while the
interfering signals are suppressed. The LCMV-BF can be designed
by using the relative transfer functions (RTFs), defined as the ratio
of the two acoustic transfer functions (ATFs) relating a source signal
and a pair of microphones [4]. The algorithm in [3] demonstrates
high separation capabilities and low distortion of the desired source
(which are essential for high speech intelligibility and low word er-
ror rate of automatic speech recognition systems), provided that the
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speakers obey a specific activity pattern, namely that time segments
when each of the speakers of interest is active alone, can be found.
These time segments are utilized for estimating the respective RTFs
of all speakers. Time segments with no active speakers are utilized
for estimating the noise statistics, another essential component in the
beamformer design. An automatic mechanism for determining the
activity of the sources of interest is therefore crucial for proper ap-
plication of the LCMV-BF. An off-line and online estimators of the
activities of the speakers were presented in [5] and [6], respectively.
In [7] the speaker indexing problem was tackled by first applying a
voice activity detector and then estimating the direction of arrival.

Spatial clustering of time-frequency bins and speech presence
probability (SPP) estimation techniques were extensively studied in
recent year as a mechanism that facilitates beamforming methods in
speech enhancement applications. An SPP scheme for constructing a
generalized eigenvalue decomposition (GEVD)-based minimum va-
riance distortionless response (MVDR) beamformer with a postfilte-
ring stage was presented in [8], for enhancing a single speaker conta-
minated by additive noise. An SPP mask is separately extracted from
all channels and then averaged to obtain a time-frequency mask used
for estimating the noise spatial cross-power spectral density (cPSD)
that is further incorporated into an MVDR-BF [9]. An integrated
time-frequency masking using deep neural network (DNN) and a
probabilistic spatial clustering is proposed in [10] for estimating the
steering vector of an MVDR-BF. In [11], a bi-directional LSTM
network that robustly estimates soft masks was proposed. The mask
is used by a subsequent generalized eigenvalue beamforming that
takes into account the acoustic propagation of the sound source.
In [12] a speech and noise masks are estimated for constructing an
MVDR-BF integrated with an automatic speech recognition system.
Recently, we have proposed an LCMV-BF approach for source se-
paration and noise reduction using SPP masks and speaker position
identifier [13]. The latter relies on pre-calibrated RTFs which are
unavailable in many important scenarios.

In this paper, we present a practical LCMV beamformer with a
post-processing stage. For estimating the components of the BF we
utilize a single microphone concurrent speakers detector (CSD) and
an adaptive dictionary for associating RTF estimates with speakers.

2. PROBLEM FORMULATION

Consider an array with M microphones capturing a mixture of
speech sources in a noisy and reverberant enclosure. For simpli-
city, we will assume that the mixture comprises one desired speaker
and one interference speaker. Extension to more speakers is rather
straightforward. Each of the speech signals propagates through the
acoustic environment before being picked up by the microphone ar-
ray. In the short-time Fourier transform (STFT) domain, the desired
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and the interfering sources are denoted sd(l, k) and si(l, k), re-
spectively, where l and k, are the time-frame and the frequency-bin
indexes. The ATF relating the desired speaker and the m-th microp-
hone is denoted hd

m(l, k) and the respective ATF of the interfering
source is denoted hi

m(l, k). The ambient stationary background
noise at the m-th microphone is vm(l, k). The received signals can
be conveniently formulated in a vector notation:

z(l, k) = hd(l, k)sd(l, k) + hi(l, k)si(l, k) + v(l, k) (1)

where:
z(l, k) = [z1(l, k), . . . , zM (l, k)]T

v(l, k) = [v1(l, k), . . . , vM (l, k)]T

hd(l, k) = [hd
1(l, k), . . . , hd

M (l, k)]T

hi(l, k) = [hi
1(l, k), . . . , hi

M (l, k)]T .

(2)

Equation (1) can be reformulated using normalized signals [3],
to circumvent gain ambiguity problems:

z(l, k) = cd(l, k)s̃d(l, k) + ci(l, k)s̃i(l, k) + v(l, k) (3)

where

cd(l, k) =

[
hd
1(l, k)

hd
ref(l, k)

,
hd
2(l, k)

hd
ref(l, k)

, . . . ,
hd
M (l, k)

hd
ref(l, k)

]T
(4)

ci(l, k) =

[
hi
1(l, k)

hi
ref(l, k)

,
hi
2(l, k)

hi
ref(l, k)

, . . . ,
hi
M (l, k)

hi
ref(l, k)

]T
(5)

are the desired and interference RTFs, respectively, and ‘ref’ is
the reference microphone. The normalized desired and inter-
ference sources are given by s̃d(l, k) = hd

ref(l, k)sd(l, k) and
s̃i(l, k) = hi

ref(l, k)si(l, k), respectively.
The goal of the proposed algorithm is to extract the desired

source (as received by the reference microphone), namely s̃d(l, k),
from the received microphone signals, while suppressing the inter-
ference source and reducing the noise level. Since the speakers can
change roles, we produce two output signals, one for each source.

3. ALGORITHM

We propose to use the LCMV-BF for the task of extracting the desi-
red speech signal. The main contribution is the derivation of a new
control mechanism for updating the various blocks of the LCMV-
BF. A new DNN-based concurrent speakers detector (CSD), is used
to detect the speakers’ activity at each time-frame. Noise-only time-
frames are used for updating the noise statistics. Frames that are so-
lely dominated by a single speaker are used for RTF estimation. Fra-
mes with multiple concurrent speakers active are not used for upda-
ting the BF components. We further propose an adaptive dictionary-
based method for associating the estimated RTFs with either the de-
sired or the interference sources.

3.1. Linearly Constrained Minimum Variance

Denote the BF weight vector by w(l, k) = [w1(l, k), . . . , wM (l, k)]T

and the BF output ŝd(l, k):

ŝd(l, k) = wH(l, k)z(l, k). (6)

The BF weights are set to satisfy the LCMV criterion with multiple
constraints [14]:

w(l, k) = argmin
w

{
wH(l, k)Φvv(k)w(l, k)

}
subject to CH(l, k)w(l, k) = g(l, k)

(7)

where g(l, k) is the desired response, set in our case to [1, 0]T ,

C(l, k) =
[
cd(l, k), ci(l, k)

]
(8)

is the RTFs-matrix, and Φvv(k) is the noise cPSD matrix assumed
time-invariant. The well-known solution to (7) is given by,

wLCMV(l, k) = Φ−1
vv (k)C(l, k)·

[CH(l, k)Φ−1
vv (k)C(l, k)]−1g(l, k). (9)

To calculate (9), an estimate of the RTFs-matrix C(l, k) and the
noise correlation matrix Φvv(k) are required. A plethora of met-
hods for estimating the RTFs can be found in the literature. In this
work, we use the GEVD-based method described in [3], that neces-
sitates frames dominated by a single active speaker.1 A method for
updating the noise statistics will be presented in the sequel.

3.2. DNN-based concurrent speakers detector (CSD)

The algorithm utilizes a trained DNN-based concurrent speakers de-
tector (CSD). The (single microphone) CSD classifies each frame of
the observed signal to one of three classes as follows:

CSD(l) =


Class #1 Noise only
Class #2 Single speaker active
Class #3 Multi speakers active.

(10)

To train the DNN-based CSD, a labeled database is required. To
construct the database, we generated 1000 single microphone scena-
rios. For each scenario, the number of clean speech utterances, rand-
omly drawn from the training set of the TIMIT database [15], was
set to n ∈ {0, 1, 2, 3}. The activity pattern of each utterance was de-
termined by applying the SPP-based voice activity detector (VAD),
described in [13], which takes the speech spectral patterns into ac-
count. The label of each frame was obtained by adding all VAD
values. Depending on the number of speech signals drawn from the
database and their associated activity patterns, the labels take va-
lues in the range {0, 1, 2, 3}. Frames with label 0 were classified to
the Class #1, frames with label 1 to the Class #2, and frames with
labels 2 and 3 were classified to Class #3. Finally, for generating
the speech signals, all utterances and a car noise, drawn from the
NOISEX-92 [16] database with SNR=15 dB, were added.

The network architecture consists of 2 hidden layers with 1024
rectified linear unit (ReLU) neurons each. The transfer function of
the last layer was set as a softmax function and the cross-entropy loss
function was used for training the network. The dropout method was
utilized in each layer. The batch-normalization method was applied
to accelerate the training phase in each layer. Finally, the adaptive
moment estimation (ADAM) optimizer was used. The inputs to the
network are the log-spectrum vectors of the noisy signals and their
associated classes are the outputs.

3.3. Noise adaptation

For initializing the estimation of Φvv(k) we assume that the speech
utterance starts with a noise-only segment, consisting of a sufficient
number of frames that enables accurate matrix inversion. The initial
Φvv(k) is then obtained by averaging periodograms:

Φ̂vv(k) =
1

lstop
v − lstart

v

lstop
v −1∑
l=lstart

v

z(l, k)zH(l, k) (11)

1An extension for groups of sources exists, but is beyond the scope of this
paper that focuses on the separation of two sources.
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where l goes over the frames of this segment. Next, frames which
were classified to Class #1 are used for updating the noise statistics
by a recursive averaging:

Φvv(l, k) = α · Φvv(l − 1, k) + (1− α) · z(l, k)zH(l, k) (12)

with α the learning rate factor. No noise adaptation is applied in
frames which do not belong to Class #1.

3.4. RTF association

As explained above, frames classified to Class #2, which indicates
that only a single speaker is active, may be used for RTF estimation.
However, as more than one speaker may be active in each utterance
(i.e., the desired and interfering speakers), it remains to associate the
estimated RTFs with a specific speaker, as explained in the sequel.

We propose a new online RTF association scheme, which is ba-
sed on a construction of an adaptive dictionary of RTFs of all the
active speakers in the scene. The first sequence of frames2 classified
to Class #2 is used to estimate the first RTF of the dictionary. Once
a new sequence of frames, classified as Class #2, is detected, and
hence a new RTF estimate ĉ(l, k) becomes available, the similarity
index (per frequency) between the new RTF estimate and all RTF
entries in the dictionary is calculated:

Sp(l, k) =

∣∣ĉH(l, k) · cp(k)
∣∣

‖ĉ(l, k)‖ · ‖cp(k)‖ . (13)

where p = 1, . . . , P is the entry index and P is the maximum num-
ber of different speakers expected in the scene (P = 2 in our case).
The frequency-wise similarity indexes are then aggregated yielding
a frame-wise similarity index:

Sp(l) =

K−1∑
k=0

Sp(l, k) (14)

where K is the STFT frame length. The RTF estimate in the l-th
frame is finally associated with an existing dictionary entry p0 or
declared as a new entry p0 < p1 ≤ P according to the following
decision rule:

RTF association(l) =

{
Sp0(l) if Sp0(l) > 0.75 ·K
Sp1(l) otherwise.

(15)

The RTFs dictionary is then updated by either substituting entry p0
or by adding entry p1 using the new RTF estimate ĉ(l, k). Note,
that if the DNN-based CSD mis-classifies frames with two speakers
as a single speaker, the similarity index will be low and therefore
no dictionary substitution will occur. An expiration mechanism, to-
gether with the upper limit on the number of entries, will guarantee
that the wrong estimate will be eventually replaced. In this work,
unlike [13], there is no requirement for pre-calibration with known
speakers’ positions. Here, we present a more flexible scheme that is
applicable in many real-life scenarios, e.g. meeting rooms and cars,
which is based on two assumptions. First, the speakers in the room
are static (slight natural movements allowed). Second, for each spea-
ker in the scene, a sequence of sufficiently long duration for which it
is the sole speaker, exists.

Using the estimated RTFs and the noise statistics estimator, as
explained above, the LCMV can be constructed. To further improve

2To avoid unreliable RTF estimates, only a sequence of 16 consecutive
frames is used for the estimation.

Algorithm 1: Summary of the speech enhancement algorithm.
Initialization:
Find Φvv based on the first 0.5sec. (11)
Input:
Noisy input z(l, k)
for l = 1 : Nseg do

Classify frame to one of the three classes (10)
if CSD(l)=1 then

Update noise estimation Φvv (12)
end
else if CSD(l)=2 then

Estimate RTF of the current speaker
if First RTF estimation then

Add to RTF dictionary (8)
end
else

Associate RTF with a speaker (13),(14),(15)
Update RTF dictionary

end
end
else if CSD(l)=3 then

continue
end

end
Enhancement:

Apply the LCMV-BF wLCMV (9) to the noisy input (6)

Apply NN-MM to the LCMV output [17]

the interference suppression and the noise reduction, a subsequent
postfilter, based on the neural network mixture-maximum (NN-MM)
algorithm [17], is applied. The entire algorithm is summarised in
Algorithm 1.

4. EXPERIMENTAL STUDY

In this section we examine all building blocks of the proposed algo-
rithm and assess the speech quality and intelligibility at the output
of the BF. For testing, we have used utterances drawn from the test
set of the TIMIT database, as well as recordings of real speakers in
a low reverberant environment.

4.1. CSD performance

To test the CSD accuracy, a database was built in a similar way to the
training database except that the test set of the TIMIT database was
used. Table 1 depicts the confusion matrix of the classifier. It is evi-
dent that the CSD correctly detects the noise-only frames with high
accuracy (99%). These frames can be used for updating the noise es-
timation. In addition, when only one speaker is active, the detection
rate deteriorates to 75%. The CSD mis-classifies 22% of these fra-
mes belonging to Class #3. Although this causes information loss,
the consequences are not severe since these frames will be discar-
ded from the estimation procedures of both the noise statistics and
the RTFs. Finally, it is also evident that frames with more than one
speaker active, are detected by the CSD with 92% accuracy. These
frames are not used for any RTF or noise estimation. However, 6%
of the multiple speakers active frames were mis-classified as belon-
ging to Class #2. While these frames generates wrong RTF estima-
tes, the measures discussed in Sec. 3.4 may mitigate their harmful
consequences.
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(a) Real scenario with 2 speakers. First speaker #1 is active then spea-
ker #2 and then both.

(b) BF output for extracting speaker #1.
Fig. 1: LCMV-BF performance.

(a) Speaker #1

(b) Speaker #2
Fig. 2: RTF association results

Table 1: Confusion matrix of the multiple speaker detector [percen-
tage]

True
1 2 3

Estimated
1 99 3 2
2 1 75 6
3 0 22 92

Table 2: Experiment time-line
Time [sec] 0-0.5 0.5-3 3-6 6-9 9-16 16-18
Desired speaker 0 1 0 0 1 0
Interfering speaker 0 0 1 0 1 0
Background noise 1 1 1 1 1 1

4.2. Performance of the LCMV-BF with real recordings

The algorithm performance was also evaluated using a recording
campaign carried out in a low reverberant environment.

4.2.1. Setup

The experimental setup is similar to the one in [13]. Speakers can
pick there position from four available seats. Microphone array con-
sisting of seven omni-directional microphones arranged in U-shape
was used. In order to control the signal to noise ratio (SNR) and the
signal to interference ratio (SIR), the signals were separately recor-
ded. Overall, we used 6 speakers (3 male and 3 female speakers) and
recorded 1800 utterances. One of the speakers was counting, while
the other was reading from the Harvard database [18]. The time-line
of signals’ activity for all scenarios is described in Table 2.

4.2.2. Sonograms Assessment and CSD classification

Figure 1a depicts an example of the observed signal with
SNR=15dB. In the upper panel, the observed signal is depicted and
in the lower panel the associated CSD classification results. It can
be verified that the noise frames are accurately classified and that
Class #2 frames are correctly detected most of the time. The out-
put of the LCMV-BF is depicted in Fig. 1b, clearly indicating the
interference suppression capabilities of the proposed algorithm.

4.2.3. RTF association performance

Fig. 2a and Fig. 2b depict the RTF association (14) of each frame to
the first and the second speakers, respectively. It is clear that the si-
milarity index S1(l) is high when the first speaker is active and low
when the second speaker is active. The similarity index S2(l) exhi-
bits opposite trends. Note that both similarity indexes get low values
when projected to frames in which both speakers are concurrently
active.

4.2.4. STOI results

Figure 3 depicts the short-time objective intelligibility measure
(STOI) [19] improvement. We tested different SIR cases from
−15dB to 0dB. Each value in the graph is calculated by averaging
18 speech utterances. It is evident that intelligibility of the obser-
ved signal is dramatically reduced in low SIR levels, and that the
proposed algorithm significantly improves the STOI results.

5. CONCLUSIONS

A new control scheme for LCMV beamforming with two main com-
ponents was presented: 1) a DNN-based concurrent speakers de-
tector (CSD) for classifying the speech frames into three classes of
speakers’ activity; and 2) an RTF association procedure based on
adaptive dictionary learning. The proposed algorithm was evaluated
using signals recorded in natural acoustic environment and exhibits
improved results.

Fig. 3: STOI performance.
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