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ABSTRACT

Recent work on multichannel end-to-end automatic speech recog-
nition (ASR) has shown that multichannel speech enhancement and
speech recognition functions can be integrated into a deep neural net-
work (DNN)-based system, and promising experimental results have
been shown using the CHiME-4 and AMI corpora. In other recent
DNN-based hidden Markov model (DNN-HMM) hybrid architec-
tures, the effectiveness of speaker adaptation has been well estab-
lished. Motivated by these results, we propose a multi-path adapta-
tion scheme for end-to-end multichannel ASR, which combines the
unprocessed noisy speech features with a speech-enhanced pathway
to improve upon previous end-to-end ASR approaches. Experimen-
tal results using CHiME-4 show that (1) our proposed multi-path
adaptation scheme improves ASR performance and (2) adapting the
encoder network is more effective than adapting the neural beam-
former, attention mechanism, or decoder network.

Index Terms— multichannel end-to-end ASR, neural beam-
former, attention-based encoder-decoder, speaker adaptation

1. INTRODUCTION

Over the last decade, with the advent of deep learning techniques,
deep neural network (DNN)-hidden Markov model (HMM) hybrid
architectures [1] have become a standard approach for automatic
speech recognition (ASR). In parallel with this, there has been signif-
icant interest in developing fully end-to-end deep learning architec-
tures, such as attention-based encoder-decoder networks [2, 3] and
connectionist temporal classification (CTC) systems [4]. The ben-
efits of such approaches include 1) structural simplicity (the entire
procedure from input to output is learned from data in a monolithic
neural network-based architecture) and 2) consistency in optimiza-
tion (the entire system is optimized with a single ASR-level objec-
tive).

Previous studies on end-to-end architectures mainly focused on
the development of ASR systems in a single-channel setup without
speech enhancement. However, in more realistic scenarios, speech
inputs to ASR systems are contaminated by background noise and
reverberation. Therefore, it is clearly important to study the utility
of the end-to-end architecture in a multichannel setup where multi-
channel speech enhancement is conducted. In light of this, we ex-
tended the attention-based encoder-decoder framework by incorpo-
rating multichannel speech enhancement components, and proposed
a Multichannel End-to-End (ME2E) ASR architecture that directly
converts multichannel speech signal to text [5, 6]. We also showed
that the proposed ME2E architecture successfully learned speech en-
hancement (noise suppression) ability through the end-to-end op-
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timization procedure and achieved higher recognition performance
than the conventional single-channel end-to-end architecture [5, 6].

Recent studies using benchmark tasks (e.g. CHiME 3 and 4
challenges) [7, 8] provided several clues to performance improve-
ment in difficult noisy ASR problems, e.g. 1) use of such multichan-
nel signal processing techniques as the beamforming method, 2) use
of a strong language model such as the LSTM-based RNN language
model, and 3) use of speaker adaptation techniques. Taking into ac-
count these hints and another recent result (e.g. [9, 10]) in which
speaker adaptation techniques were effectively applied to the DNN-
HMM hybrid architecture, we naturally reach the expectation that
speaker adaptation techniques can further improve the performance
of the ME2E ASR architecture.

Motivated by the above, in this paper, we propose a multi-pass
adaptation scheme for the ME2E ASR architecture where input
speech data are transmitted through an unprocessed noisy speech
path and an speech-enhanced path, and evaluate its effectiveness
compared to a single-path adaptation scheme where input speech
data are transmitted only through a speech-enhanced path. In addi-
tion, we analyze the effect of speaker adaptation in the ME2E ASR
architecture, directing attention to the following questions:

1. Which is the most effective for speaker adaptation among ME2E
ASR system components: neural beamformer, encoder network,
attention mechanism, or decoder network?

2. How does the speaker adaptation procedure affect the inner be-
havior of the ME2E ASR system?

Our study in this paper is related to previous works on speaker
adaptation for a conventional HMM-based ASR architecture (e.g.
[9, 10, 11, 12]), except that we focus on speaker adaptation in the
ME2E ASR framework. To the best of our knowledge, this paper
shows the first results of the speaker adaptation for either the end-to-
end ASR architecture or the neural beamformer.

2. OVERVIEW OF MULTICHANNEL END-TO-END ASR

In Figure 1, we illustrate an overview of the ME2E ASR archi-
tecture. The architecture adopts a mask-based neural beamformer
[13, 14] as a speech enhancement component and the attention-based
encoder-decoder [2, 3] as an ASR component, where the feature ex-
traction function connects these components. Let Xc = {xc

t ∈
CF |t = 1, · · · , T} be a short-time Fourier transform (STFT) fea-
ture sequence recorded at c-th channel, where xc

t is a F -dimensional
STFT feature vector at input time step t, T is the input sequence
length, and C is the number of channels. Given multichannel noisy
speech inputs {Xc}Cc=1, the ME2E ASR architecture directly esti-
mates the a posteriori probabilities for output label sequence Y =
{yn ∈ V|n = 1, · · · , N} using the fully neural network-based ar-
chitecture, where yn is a label symbol (e.g. character) at output time
step n, N is the output sequence length, and V is a set of labels, as
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Fig. 1. Overview of multichannel end-to-end ASR architecture.

follows:

P (Y |{Xc}Cc=1; Λall) =
∏
n

P (yn|{Xc}Cc=1, y1:n−1; Λall), (1)

X̂ = Beamformer({Xc}Cc=1; Λbeam), (2)

Ô = Feature(X̂), (3)

H = Encoder(Ô; Λenc), (4)
cn = Attention(an−1, sn, H; Λatt), (5)

P (yn|{Xc}Cc=1, y1:n−1; Λall) =

Decoder(cn, sn−1, y1:n−1; Λdec),
(6)

where Λall = {Λbeam,Λenc,Λatt,Λdec} represents a total set of train-
able model parameters. Λbeam, Λenc, Λatt, and Λdec correspond to the
model parameters for each function.

First, Beamformer(·) estimates the beamforming filter gf

through the estimation of three statistics, (1) the cross-channel
power spectral density matrix for speech ΦS

f , (2) the same type
matrix for noise ΦN

f , and (3) the reference microphone vector
u, and it also integrates the multichannel noisy speech signals
{Xc}Cc=1 into a single-channel enhanced speech signal X̂ by lin-
ear filtering. Next, Feature(·) converts the enhanced STFT fea-
ture sequence X̂ to a log Mel filterbank (LMF) feature sequence
Ô = {ôt ∈ RDO |t = 1, · · · , T}, where ôt is a DO-dimensional
LMF feature vector at input time step t. Moreover, Encoder(·)
transforms the enhanced LMF feature sequence Ô to the L-length
feature sequence H = {hl ∈ RDH |l = 1, · · · , L}, where hl is a
DH-dimensional state vector of the encoder’s top layer at subsam-
pled time step l. Attention(·) integrates all encoder outputs H into
a DH-dimensional context vector cn ∈ RDH using L-dimensional
attention weight vector an ∈ [0, 1]L that represents a soft alignment
of the encoder outputs at output time step n. Finally, Decoder(·)
updates hidden state sn, estimates the a posteriori probability for
output label yn at output time step n, and further estimates the a
posteriori probabilities for output sequence Y based on the RNN
recursiveness.

3. ADAPTATION OF MULTICHANNEL END-TO-END ASR

3.1. Basic formalization of speaker adaptation procedure

In this paper, we focus on an unsupervised speaker adaptation sce-
nario, where hypothesized transcriptions are generated by the first-
pass decoding with the speaker-independent (SI) end-to-end system

and used as target labels in place of (correct) reference transcrip-
tions. We also adopt a simple retraining-based adaptation scheme,
where the network parameters of either all or some of the system
components are re-estimated using a target speaker’s speech data.

Let Λadapt be parameters to be adapted (adaptation parameters) in
a speaker adaptation stage (e.g. Λadapt = Λenc). We also assume that
training samples spoken by target speaker s, Xs = {(Xi, Yi)|i =
1, · · · , I}, are available for adaptation, where Xi is the i-th mul-
tichannel noisy speech sample, Yi is its corresponding target label,
and I is the number of such samples. Then, using adaptation objec-
tive E(Λall;Xs), an optimization procedure for a speaker-adapted
end-to-end system is formalized as follows:

Λadapt = arg min
Λadapt

E(Λall;Xs). (7)

Considering the risk of overtraining and/or storage cost, the
adaptation parameters should not be too large. In addition, it is
also an interesting question which component in the ME2E sys-
tem is more effective for speaker adaptation (in other words, more
related to speaker characteristics). We experimentally investigate
this point by changing the adaptation parameter selection, such as
Λadapt = Λbeam or Λadapt = Λenc.

3.2. Multi-path adaptation for multichannel end-to-end ASR

Although the ME2E ASR architecture is fully based on neural net-
work, it consists of such separately designed components as the
speech enhancement component and the feature extraction compo-
nent. Based on this, we can consider a multi-path adaptation scheme
in the ME2E architecture by adopting the multi-condition training
concept [8]. In Figure 2, we give an overview of the multi-path
adaptation procedure. In addition to a speech-enhanced path that
goes through the neural beamformer, i.e. the speech enhancement
component, we set an unprocessed noisy speech path that goes
directly from the input to the latter component, the attention-based
encoder-decoder network. The resulting procedure makes it possible
to optimize the entire network not only with the signal enhanced by
the neural beamformer but with the unprocessed noisy signal. It is
therefore expected that the attention-based encoder-decoder network
learns the robustness against noisy speech and becomes a powerful
ASR back-end component.

Let Lenhan(Y |X) be the joint CTC-attention loss [15] through
the speech-enhanced path and Lnoisy(Y |Xc) be the loss through the
unprocessed noisy path. Then, the optimization of the multi-path
adaptation procedure is formalized as follows:

Λadapt = arg min
Λadapt

(
Eenhan(Λall;Xs) + Enoisy(Λall;Xs)

)
, (8)

where Eenhan and Enoisy are the accumulated loss defined as:

Eenhan(Λall;Xs) =

I∑
i=1

Lenhan(Yi|Xi), (9)

Enoisy(Λall;Xs) =
I∑

i=1

C∑
c=1

Lnoise(Yi|Xc
i ), (10)

where Xc
i is the i-th single-channel noisy speech sample recorded

at c-th channel. In the successive experiment section, we compare
the multi-path adaptation procedure and the single-path adaptation
procedure that uses only the speech-enhanced path for optimization.
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Fig. 2. Overview of multi-path adaptation scheme for multichannel end-to-end ASR architecture.

4. EXPERIMENT

4.1. Condition

We evaluated the speaker adaptation effect for the ME2E ASR archi-
tecture mainly using the CHiME-4 corpus, which is a well-known
multichannel noisy ASR benchmark. The CHiME-4 corpus con-
sists of real and simulated speech data recorded using a tablet de-
vice with 6-channel microphones in four environments: cafe (CAF),
street junction (STR), public transportation (BUS), and pedestrian
area (PED). The data are also grouped in three subsets: 1) training
set, 2) development set, and 3) evaluation set. We used the training
set to train the baseline SI ME2E system, which also worked as the
initial seed model for the latter speaker adaptation procedure. We
also used the development set to optimize such hyperparameters as
the number of training epochs in the adaptation, the evaluation set
to adapt the adaptation model parameters. We then evaluated the
performances of the speaker-adapted ASR systems.

The experimental conditions were basically the same as our pre-
vious studies [5, 6]. Main differences of the conditions in the present
paper were that we used an additional corpus for training the base-
line SI ME2E system and an external language model. Our previous
study [16] suggested that the amount of training data in the CHiME-
4 corpus was not sufficient to learn the strong ASR back-end and
especially to learn the appropriate language regularity. To compen-
sate for such data insufficiency, we used in the paper the WSJ corpus
[17] as additional training data and applied the LSTM-based RNN
language model to the decoding procedure. We utilized the WSJ’s
single-channel clean data for training of the encoder-decoder net-
work by bypassing the beamforming network. Because the external,
LSTM-based language model was trained using a large amount of
the WSJ text data, it provided more appropriate language regularity
for the decoding procedure. Our adopted decoding procedure basi-
cally follows the one proposed in [18]. Other experimental condi-
tions, such as 1) conditions related to feature extraction, 2) network
configurations, and 3) conditions related to the training of the base-
line SI ME2E system, were basically the same as those in [5, 6].

To evaluate the speaker adaptation effect in the ME2E ASR
framework, we conducted the following three-step procedure that
used the unsupervised adaptation setup: 1) generate hypothesized
transcriptions by the first-pass decoding with the baseline SI ME2E
system, 2) adapt (re-estimate) the network parameters of all or some
of the system components, using a target speaker’s speech data,
and 3) again conduct decoding with the speaker adapted system.
Note that, in the multi-path adaptation procedure, we shared the
hypothesized transcriptions obtained by the decoding through the
enhanced path as the target labels for the corresponding noisy-path
optimization. The results were basically represented as word error
rate (WER) for the real data of the evaluation set.

For the optimization in the adaptation stage, we used the
stochastic gradient descent (SGD) algorithm, which enabled us
to fine-tune the network parameters with a small learning rate, with
the early stopping technique [19]. We set the learning rate as 0.005
based on preliminary experiments. We repeated 20 training epochs

Table 1. Word error rate [%] and character error rate [%] of baseline
speaker-independent system for real data of evaluation set.

use external language model WER CER
No 41.7 20.9
Yes 28.8 17.2

in the adaptation procedure, while calculating the WER scores every
5 epochs. Based on the WER scores for the real data of the devel-
opment set, we set the number of epochs (i.e. 5, 10, 15, or 20) for
the adaptation using the evaluation set. Regardless of the number of
epochs, ASR performances were improved by the adaptation proce-
dure. However, selecting appropriate number of adaptation epochs
was important to suppress over-fitting and achieve better recognition
performances.

4.2. Result

4.2.1. Baseline

First, we evaluated the effect of the external language model. In
Table 1, we show the WER scores of the baseline SI ME2E system
for the real data of the evaluation set. For reference, we also show
the character error rate (CER) in the table. From the table, we find
that the external language model was quite effective at improving
the baseline performance, which suggests that the amount of training
data in the CHiME-4 corpus was insufficient to learn the appropriate
language regularity. Based on this, in successive experiments, we
adopted the external language model in the decoding procedure of
all of the evaluated systems.

4.2.2. Speaker adaptation

In Table 2, we show the WER scores of the speaker-adapted systems
for the real data of the evaluation set. The upper row corresponds
to the adaptation scheme. The left-end column shows the set of net-
work parameters, which were adapted (re-estimated) as the adap-
tation model parameters. In this experiment, we investigated five
different assignments of the adaptation model parameters: 1) whole
network (Λadapt = Λall), 2) neural beamformer (Λadapt = Λbeam), 3)
encoder network (Λadapt = Λenc), 4) attention mechanism and de-
coder network (Λadapt = {Λatt,Λdec})1, and 5) neural beamformer
and encoder network (Λadapt = {Λbeam,Λenc}).

From the table, we find that, compared to the non-adapted base-
line system, the speaker-adapted systems basically achieved higher
recognition performances, and that the speaker adaptation was ef-
fective even for the ME2E ASR architecture. Also, the comparison
of the single-path adaptation and the multi-path adaptation validated

1To estimate the a posteriori probabilities for output label sequence, the
decoder network works cooperatively with the attention mechanism. Hence,
we treated them as a set of the adaptation model parameters.
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Table 2. Word error rate [%] of speaker-adapted system for real data
of evaluation set.

Λadapt single-path multi-path
{Λall} 27.1 26.4
{Λbeam} 28.0 N/A
{Λenc} 27.1 26.2
{Λatt,Λdec} 28.7 28.9
{Λbeam,Λenc} 27.2 26.3

Table 3. Word error rate [%] of environment-adapted system for real
data of evaluation set.

Λadapt scheme WER
{Λbeam} single-path 28.2

{Λbeam,Λenc} multi-path 27.4

the effectiveness of the multi-path adaptation scheme, which aug-
mented the variability of the adaptation data using both the speech-
enhanced and unprocessed noisy paths.

Furthermore, from the table, we can obtain the following find-
ings with respect to the adaptation model parameters:

1. The adaptation of the decoder network did not contribute to im-
proving the ASR performance. This is probably because the de-
coder network mainly handles language-level features, which are
not closely related to speaker characteristics.

2. The adaptation of the encoder network achieved the lowest WER
score, which is competitive or a little bit lower than that of the
adaptation of the entire network. This result suggests that the
adaptation of only the encoder network could be a sufficient re-
placement of the adaptation of the entire network. This is prob-
ably because the encoder network mainly handles the acoustic-
signal-level features that contain speaker characteristics.

3. Although the adaptation of the neural beamformer contributed to
improving the ASR performance, the improvement was smaller
than that of the adaptation of the encoder network. The result
suggests that the beamforming procedure was not directly related
to the speaker characteristics, or that the beamforming filter esti-
mated by the neural beamformer already possessed speaker vari-
ability to some extent.

4. Contrary to expectations, the adaptation effects of the neural
beamformer and the encoder network were not complementary.
The adaptation of both the neural beamformer and the encoder
network did not contribute to further improving the ASR perfor-
mance, compared to the adaptation of either of them alone.

4.2.3. Environment-level adaptation

There is the possibility that the neural beamformers are more effec-
tive for environment adaptation than for speaker adaptation because
noise characteristics basically depend not on speakers but on speak-
ing environment. Taking this into account, we additionally investi-
gated the environment-adaptation effect.

In Table 3, we show the WER scores of the environment-adapted
systems, which are related to the adaptation of the neural beamform-
ers, for the real data of the evaluation set. From the table, we find that
the performance of the environment-adapted systems was lower than
that of the speaker-adapted systems. The results suggested that even
the environment-level adaptation was not very effective for the adap-
tation of the neural beamformers and demonstrated that the speaker-

Table 4. Signal-to-distortion ratio and perceptual evaluation of
speech quality for simulation data of development set.

Λadapt scheme WER SDR PESQ
{ } (baseline) N/A 14.7 9.10 2.33
{Λbeam} single-path 14.1 9.14 2.34

{Λbeam,Λenc} multi-path 12.5 9.13 2.34

level adaptation was more effective at improving the total ASR per-
formance for the ME2E system.

4.2.4. Evaluation in signal-level measures

In addition to the above ASR-level evaluations, we conducted ad-
ditional signal-level evaluation to analyze how the speaker adapta-
tion procedure affected the behavior of the ME2E ASR architec-
ture. To do this, we adopted two signal-level measures: 1) signal-to-
distortion ratio (SDR) [20], and 2) perceptual evaluation of speech
quality (PESQ) [21], which are commonly used for speech enhance-
ment quality assessment. Then, using these measures, we evaluated
the speech enhancement quality of the outputs of the beamforming
component. The calculation of these measures requires a pair of es-
timated enhanced speech signals and its corresponding clean speech
signals. Therefore, we used the simulation data of the development
set for this evaluation.

In Table 4, we show WER, SDR, and PESQ scores for the base-
line and the speaker-adapted systems, which are related to the adap-
tation of the neural beamformers. The first row indicates the result
of the non-adapted baseline system. From the table, we clearly find
that the speaker adaptation effect in terms of ASR-level measures
(i.e. WER) appears for the simulation data of the development set.
However, there is little difference in the signal-level measures (i.e.
SDR and PESQ) between the speaker-adapted systems and the base-
line system. This result suggests that the effect of the adaptation pro-
cedure was small for the behavior of the beamforming component,
and it also validated the findings in Section 4.2.2 that the adaptation
of the acoustic feature transformation was the most effective for the
adaptation of the total ME2E ASR architecture.

5. CONCLUSION

In this paper, we conducted experimental evaluations of the speaker
adaptation effect in the ME2E ASR architecture. The experimental
results using the CHiME-4 corpus clearly demonstrated the effec-
tiveness of the speaker adaptation in the ME2E ASR architecture. In
addition, the experimental results led to the following findings: 1)
our proposed multi-path adaptation procedure, which utilizes both
the speech-enhanced and noisy paths, is effective at increasing adap-
tation performance, and 2) among the system components of the
ME2E ASR architecture (the neural beamformer, the encoder net-
work, the attention mechanism, and the decoder network), the adap-
tation of the encoder network was the most effective at adapting the
target speaker’s characteristics.

Furthermore, the experimental results showed that the adapta-
tion procedure had little effect on the behavior of the beamforming
component within the ME2E ASR system. This is probably due
to the tight constraint that our adopted mask-based neural beam-
former used beamforming filters based on the less flexible, minimum
variance distortionless response (MVDR) beamformer [22]. The
constraint would degrade the adaptability of the mask-based neural
beamformer, and the adoption of other more flexible beamformers
[23] will be an interesting future research topic.
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