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ABSTRACT

This work examines acoustic beamformers employing neural net-
works (NNs) for mask prediction as front-end for automatic speech
recognition (ASR) systems for practical scenarios like voice-enabled
home devices. To test the versatility of the mask predicting network,
the system is evaluated with different recording hardware, differ-
ent microphone array designs, and different acoustic models of the
downstream ASR system. Significant gains in recognition accuracy
are obtained in all configurations despite the fact that the NN had
been trained on mismatched data. Unlike previous work, the NN is
trained on a feature level objective, which gives some performance
advantage over a mask related criterion. Furthermore, different ap-
proaches for realizing online, or adaptive, NN-based beamforming
are explored, where the online algorithms still show significant gains
compared to the baseline performance.

Index Terms— Far-field speech recognition, acoustic beam-
forming, neural networks, time-frequency masks, online processing

1. INTRODUCTION

The demand for distant speech recognition technology is surging
as voice-enabled home devices, such as gaming consoles and the
so-called smart speakers, are gaining popularity among consumers.
Far-field audio capture, however, imposes challenges on automatic
speech recognition (ASR) systems because the captured speech sig-
nals can be severely degraded by both background noise and re-
verberation. A popular and effective approach to render ASR ro-
bust against such acoustic distortions is to train or adapt the acous-
tic model by using noise-corrupted speech data. While such multi-
condition models can significantly reduce the word error rate (WER)
in noisy reverberant environments, there is still a significant perfor-
mance gap between close-talking and distant speech recognition.

To further close this performance gap, many distant speech
recognition systems employ multiple microphones to perform beam-
forming and/or dereverberation. In recent distant ASR challenges,
such as REVERB [1] and CHiME-3/4 [2, 3], the use of multi-
ple microphones was shown to significantly improve the speech
recognition accuracy [4, 5]. As a matter of fact, multi-channel
beamforming and dereverberation turned out to be two of the few
front-end signal processing techniques which improved recognition
rates even in the presence of strong neural-network based ASR back-
ends [6, 7, 8, 9]. Indeed, practically all commercial devices that are
capable of recognizing distant speech are equipped with multiple mi-
crophones for performing sound source localization, beamforming,
dereverberation, or multi-channel acoustic modeling [10].

While the recognition gains from acoustic beamforming re-
ported for CHiME were very impressive, they may not be directly

transferable to commercial usage scenarios. Some important dif-
ferences between CHiME and typical usage scenarios is that test
utterances are much longer in CHiME (6.9 s on average) than most
voice queries and the speaker to microphone distances were less
than 1m, whereas they are usually much larger in home-device
scenarios which typically involve more speaker mobility as well.
Furthermore, in practice, it is almost impossible to consistently use
the same set of training and test data for beamforming and acoustic
modeling. In usual development setups, acoustic models are trained
on a large quantity of single-channel data obtained from traffic of
existing services, which may contain non-negligible acoustic distor-
tion. In contrast, in order to train beamforming systems, we resort to
simulated far-field data or collect multi-channel recordings obtained
with a target device.

The objective of this paper is to evaluate practical aspects of neu-
ral mask-based beamforming, a class of beamforming approaches,
which achieved huge success for CHiME [11, 4, 12, 9] and has been
gaining a lot of attention in the past two years. In this approach,
a neural network (NN) is employed to predict soft time-frequency
masks, which indicate for each time-frequency point whether it is
dominated by either speech or noise. Then, these masks are used
to compute spatial covariance matrices for speech and noise, from
which beamforming coefficients can be derived. Our contributions
can be summarized as follows:

• Contrary to CHiME-3/4, which used a single recording hard-
ware and datasets which were all derived from the Wall Street
Journal (WSJ) task, we carry out experiments with two different
microphone arrays as recording devices, several different beam-
forming alternatives, and two different acoustic models, both
trained on much larger datasets than the CHiME training set.
These experiments allow us to not only examine the practical
relevance of the neural mask-based beamforming but also in-
vestigate the modularity of the system components, i.e., if any
recording device can be combined with any beamformer and any
acoustic model.

• We discuss different training criteria for the mask estimation NN
and propose a new criterion, mean squared error between noisy
and reference clean features, which requires complex-valued
network operations as in [13].

• We explore both offline and online beamforming performance
and discuss their differences whereas most of the previous work
addressed offline beamforming, with only a few exceptions [14].

2. NEURAL MASK-BASED BEAMFORMING

Fig. 1 shows a block diagram of the neural mask-based beamformer
considered in [11, 12, 15], where Yf,t denotes a multi-channel mi-
crophone signal in the short-time Fourier transform (STFT) domain
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Fig. 1: Block diagram of neural mask-based beamformer. SCM:
spatial covariance matrix. BF: beamforming.

with f and t being frequency bin and time frame indices, respec-
tively. The beamformer output, denoted by X̂f,t, is an estimate of
speech signal Xf,t, which may include reverberation effects. The
number of microphones is represented as K.

2.1. Mask-estimation neural network
The mask-estimation NN produces speech and noise masks inter-
preted as speech and noise presence probabilities. Each microphone
channel signal is forwarded through the NN, which yields K dif-
ferent versions of speech and noise masks. The K masks for each
time-frequency bin are then consolidated into a single mask with a
median operation.

The network structure employed in our work is similar to [11].
The input layer splices the observed magnitude spectrum of the cur-
rent frame with those of ±3 neighboring frames. The spliced fea-
ture vector is then fed into a normalization layer. In [11, 15], an
utterance-based batch normalization was proposed, which converts
input feature xf,t into yf,t with yf,t = γx̃f,t + β, where x̃f,t =
(xf,t−µf )/σf , µf =

∑
t xf,t/T , and σ2

f =
∑
t (xf,t − µf )

2 /T .
Variables γ and β are parameters that are learned during training
while T denotes the utterance length. Note that this normalization
requires an entire utterance to be seen. After the normalization layer
comes a unidirectional LSTM layer with 513 units1, followed by
two 513-unit fully connected layers with ReLU nonlinearity. On
top, there is a 1026-unit fully connected output layer with sigmoid
nonlinearity. The output activations represent predicted speech and
noise masks, taking values between 0 and 1.

The mask estimation NN can be trained by minimizing the bi-
nary cross entropy (BCE) between the network output and ideal bi-
nary masks for speech and noise as in [11, 15]. We also explore
alternative training criteria as discussed later.

2.2. Beamforming
A beamformer estimates the speech signal by multiplying the mi-
crophone signal with beamforming coefficient vector wf as X̂f,t =
wH
f Yf,t. With the mask-based approach, the beamforming coef-

ficient vector is calculated based on speech and noise spatial co-
variance matrices, which may be estimated using the time-frequency
masks as follows:

Φννf =
1∑
tM

ν
f,t

∑
tM

ν
f,tYf,tY

H
f,t, ν ∈ {X,N} . (1)

Here, MX
f,t and MN

f,t are the estimated speech and noise masks, re-
spectively, and (·)H is a conjugate transpose operator.

1Note that we use an LSTM here instead of the BLSTM employed in [11,
15], however with two times the number of hidden units. The backward layer
was omitted since we later on aim for online processing and since preliminary
experiments showed that the performance drop was below 0.4% absolute
WER for the test set used in Section 4.

In one form of mask-based beamforming, called the General-
ized Eigen-Value (GEV) beamformer, wf is calculated by maxi-
mizing the output SNR. After GEV, it is customary to apply nor-
malization filters that compensate for the distortions introduced by
the beamforming operation. We use Blind Analytic Normalization
(BAN) [16] and group delay normalization [17], which modify the
magnitude and phase responses, respectively.

An alternative scheme is the MVDR beamformer, which we em-
ploy in most of our experiments. The MVDR beamformer can be
calculated as [12, 18] wMVDR

f = ΦNN
−1
f ΦXXfr/λ, where λ is a

normalization factor, calculated as the trace of ΦNN
−1
f ΦXXf , and

r is a unit vector associated with a reference microphone. The refer-
ence can be chosen as the one that maximizes the output SNR as
suggested in [12]. While MVDR has built-in capability of regu-
larization, MVDR followed by BAN processing provided the best
performance in our experiments.

2.3. Feature-level training criteria
In [11, 15] the neural network for mask estimation is trained by
using the binary cross entropy (BCE) between the network output
and the ideal binary masks as the loss function. However, with the
complex-valued algorithmic differentiation rules introduced in [13],
it is possible to backpropagate gradients through the beamforming
operation and use a loss function that depends on data computed
after the beamformer. Here we experimented with an ASR feature-
level criterion. LogMel MSE loss function is defined as L(θ) =∑
k

∑
t

∑
d(F̂d,t(θ) − F∗

d,t,k)
2, where F̂ represents normalized

logarithm of mel-filterbank features obtained from the beamformed
signal, F∗ is the same for the clean signal, d and k denote the fea-
ture and channel dimension, respectively, and θ represents neural
network parameters.

3. FROM OFFLINE TO ONLINE BEAMFORMING

Because the neural mask-based beamformer described in the previ-
ous section assumed a whole utterance to be available beforehand,
several changes must be made to let it work in scenarios where on-
line processing is desirable. We consider two different ways to per-
form online beamforming, frame-level and segment-level which we
discuss in the following.

3.1. Frame-level online beamforming

In frame-level online beamforming, we calculate beamforming co-
efficients for each frame considering statistics accumulated in time.
We also need to use online normalization methods for the mask pre-
diction NN.

Two online normalization schemes:
In our preliminary investigations, the utterance-based normalization
described in the previous section was found to be essential for ob-
taining a good beamformer especially in a far-field scenario where
an input signal power can be highly variant mainly because of the
varying distance between the user and microphones. To avoid the
whole-utterance batch normalization described in Section 2.1, we
experiment with two alternative normalization schemes.

The first one, which we call online batch normalization, recur-
sively computes the statistics as

µf,t =
µ̃f,t
ct

, σ2
f,t =

P̃f,t
ct
− µ2

f,t, (2)
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where µ̃f,t = αµ̃f,t−1 + xf,t, P̃f,t = αP̃f,t−1 + x2f,t, and ct =∑t
n=1 α

n. Constant α is a forgetting factor and can be reasonably
set to 1 when test utterances are rather short. The second normal-
ization scheme is what we call intra-frame normalization, which is
defined as

µt =
1

F

∑
f

xf,t, σ2
t =

1

F

∑
f

(xf,t − µt)2 . (3)

Note that normalization takes place within each frame by calculating
the statistics along the frequency axis instead of the time axis.

Recursive spatial covariance matrix estimation:
The offline spatial covariance matrix estimation of Eq. (1) also needs
to be modified to accommodate for online processing. We propose
the following online estimation, which employs a ”burn-in” period
of length Tinit as follows:

Φννf,t =

{∑Tinit
τ=1 M

ν
f,τYf,τY

H
f,τ , if t ≤ Tinit,

Φννf,t−1 +Mν
f,tYf,tY

H
f,t, otherwise.

(4)

After the burn-in period, the spatial covariance matrix estimates are
updated with no latency, while [19] updates in chunks. This burn-in
period prevents the noise covariance matrix from becoming singu-
lar. Beamforming coefficients are calculated at each frame using the
MVDR formula with the spatial covariance matrix estimates.

Reference microphone selection:
SNR-based reference microphone selection for MVDR mentioned
in Section 2.2 also needs to observe an entire utterance. While it is
possible to select the reference microphone at each frame, this may
lead to additional time-dependent variations in beamformer output,
which an acoustic model has not seen during training and is harmful
for ASR. To curb such variations, a fixed, i.e., the first, microphone
is used as the reference microphone for the online setup.

3.2. Segment-level online beamforming on streaming data
Our second approach to online beamforming is to use fixed beam-
forming coefficients for a certain duration of incoming audio instead
of calculating a beamformer at every frame. Our whole test data
were recorded at a single session with short silences between utter-
ances. So, we could process the whole recording by beamforming
on fixed duration segments of this data. We performed utterance seg-
mentation after processing the whole recording whereas, in frame-
based online beamforming, we worked with individual single utter-
ances. One advantage of this approach is that we can make use of
previous context in finding speech and noise spatial covariance ma-
trices. Another advantage is that we do not update the beamformer
coefficients every frame but only after a fixed duration and we can
use offline batch normalization. On the other hand, from a practical
point of view, this approach may incur much more computational
cost because the entire input audio needs to be processed before ut-
terance segmentation.

We consider a Ts-second long segment and include a Tc-second
portion preceding the current segment as context. We obtain masks
from a mask-prediction NN and we extract speech and noise statis-
tics from the region including Ts + Tc seconds where we weight
masks in the context region with an exponentially decaying scale
function e−t/τx for speech masks and e−t/τn for noise masks, as we
get away from the central segment boundary. Typically τn is higher
than τx since we would like to make use of the context more to ob-
tain better noise statistics. After obtaining beamformer coefficients
from the statistics, we apply the beamformer to the central segment

Table 1: WER of beamformers trained with different loss functions.

Loss function Device Acoustic models
Near-field Far-field

BCE 7-mic 19.19 % 11.26 %
LogMel MSE 17.69 % 10.42 %

of length Ts seconds. We move to the next central segment after
this and continue processing similarly. So, in this approach, there
is a processing delay of Ts seconds. We also experimented with a
zero delay version where we apply the beamformer obtained in one
segment to the next segment so that there is no delay in processing,
making this a fully online method.

4. EXPERIMENTS

We performed a series of experiments to evaluate the effectiveness of
the variants of the neural mask-based beamformer described in the
previous sections by using far-field utterances we collected. Our test
set consisted of utterances recorded with two different circular mi-
crophone arrays, one with seven microphones and one with eight mi-
crophones. The 7-channel array had a radius of 4.25 cm. It had six
microphones equally spaced along its perimeter and one microphone
at the center. The 8-channel array was a 8 cm-radius uniform circu-
lar microphone array. These two arrays are referred to as 7-mic and
8-mic, respectively. The test utterances were spoken by four people,
two male and two female, and recorded in a conference room with
various speaker-to-microphone distances. The test set consisted of
800 utterances, 400 of which were spoken by moving speakers. The
room had some ambient noise. In addition, some utterances were
spoken when background music was being played.

For mask estimation NN training with the CNTK frame-
work [20], the CHiME 3 simulated training data was used [2].
We also experimented with larger training sets, but it had little im-
pact on the recognition accuracy. These results are not reported
here.

Two LSTM acoustic models were built for ASR. One model was
trained on 3.4K hours of audio collected from Microsoft Cortana
traffic. The other model was obtained by adapting this near-field
model to simulated far-field data, which were obtained by adding
reverberation and background noise to the original 3.4K-hour data.
The teacher-student (TS) adaptation technique [21] was used, which
uses near-field data as a teacher to obtain soft senone posterior tar-
gets and far-field counterpart as the student. The student model
trained this way was used as a far-field acoustic model. In the fol-
lowing, we refer to the two acoustic models as near-field and far-field
models, respectively.

4.1. Training criteria for mask estimation network
Table 1 shows the WERs for the conventional (BCE) and improved
(LogMel MSE) objective functions, which clearly shows the supe-
riority of the latter. Therefore, for all subsequent experiments, we
employed an NN trained with an offline beamformer to optimize
the LogMel MSE loss, except for frame-based online beamform-
ing, where it did not improve performance as compared to the BCE
trained model. The number of Mel filters used was D = 80, where
the frame size and frame shift were 1024 and 256 samples, respec-
tively.

4.2. Different microphone arrays
To show that the neural mask-based beamformers can be applied to
different microphone arrays with no modification, we performed ex-
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Table 2: WERs of different beamformers for different microphone
arrays. NMBF refers to neural mask-based beamformer.

Methods Device Acoustic models
Near-field Far-field

Raw (Channel #0)

7-mic

39.42 % 17.58 %
BeamformIt [22] 31.38 % 17.29 %
Differential [23] 22.51 % 11.76 %

NMBF 17.69 % 10.42 %
Raw (Channel #0)

8-mic
48.42 % 17.24 %

BeamformIt [22] 35.46 % 15.95 %
NMBF 19.14 % 11.39 %

periments by using the 7-mic and 8-mic arrays described earlier. We
also benchmarked our beamformers against two conventional ones.
One is BeamformIt [22], which performs weighted delay-and-sum
beamforming and has often been used in previous studies. Another
one is a differential beamformer [23] which was optimally designed
for the 7-mic array. It consists of 12 fixed differential beams and
switches the beams to use based on SNR estimates. This beam-
former is capable of online processing. Benchmarking against such
a well-engineered beamformer can reveal the true value of the neural
mask-based beamformer in the application scenario considered.

Table 2 lists the WERs obtained with different beamformers us-
ing the two microphone arrays. The following observations can be
made.

• The neural mask-based beamformer significantly improved the
ASR performance even for the far-field acoustic model regard-
less of the array geometry. Also, this beamformer significantly
outperformed BeamformIt. These are consistent with previous
findings obtained on CHiME data.

• The performance of the neural mask-based beamformer sur-
passed that of the differential beamformer even for the 7-mic
array, to which the differential beamformer was tuned. How-
ever, it should be noted that the differential beamformer is
online whereas the neural mask-based beamformer used in this
experiment was based on offline processing.

Overall, the results demonstrate the robustness of the neural mask-
based beamforming approach to changes in microphone array ge-
ometry as well as the high beamforming capability even when the
characteristics of the training data for the mask estimation NN sig-
nificantly differ from those of the test environment.

4.3. Frame-level online beamforming
Table 3 shows the impact on the WER of the modifications that we
made to derive a frame-level online beamformer. This experiment
was carried out with the 7-mic array. Note that the BCE model was
used as it performed better for this setup.

By comparing the first and last rows, the overall performance
degradation resulting from the online operation was 16.2%. Both of
the changes made to covariance estimation and normalization con-
tributed to this degradation. Compared with the differential beam-
former used in the previous experiment, the online version of the
neural mask-based beamformer performed equally well on the near-
field acoustic model and slightly worse on the far-field model.

4.4. Segment-level online beamforming
The experiments reported above worked with individual utterances
already segmented out from an original recording. In this part, we

Table 3: WERs of frame-level online beamforming. Only two con-
ditions, with superscript ∗ are truly based on online processing.

Covariance
estimation

Normalization
scheme

Acoustic models
Near-field Far-field

Offline
Batch 19.19 % 11.26 %

Online batch 21.97 % 12.57 %
Intra-frame 21.12 % 12.71 %

Online
Tinit=̂0.64 s

Batch 19.97 % 11.82 %
Online batch∗ 23.16 % 13.85 %
Intra-frame∗ 22.62 % 13.08 %

Table 4: WERs obtained of segment-level online beamformers.

Device Delay Acoustic models
(sec) Near-field Far-field

7-mic 0.7 23.08 % 11.29 %
0.0 28.57 % 12.04 %

8-mic 0.7 18.93 % 11.42 %
0.0 23.75 % 11.84 %

process the original recording in fixed length segments from begin-
ning to end as described in Section 3.2. We chose a segment size
of Ts = 0.7 seconds and a context size of Tc = 5 seconds after
briefly experimenting with different durations. The noise and speech
time-constants for weighting masks in the context region were cho-
sen as τn = 5 and τx = 0.5 seconds, respectively. We present the
WERs of the segment-based beamforming in Table 4. Contrary to
the frame-level online beamforming, we obtained better results with
a LogMel MSE trained and offline batch normalized NN model fol-
lowed by MVDR+BAN beamformer with a fixed reference micro-
phone, which contributed to getting better results especially with the
far-field ASR model. It appears the gains in WER are mostly from
the ability to be able to use a better offline model in addition to being
able to use previous context, not available to offline or frame-level
online methods, but is fair to assume availability in certain scenar-
ios. If we allow for a processing delay of Ts = 0.7 seconds, we
can get better results but even a zero delay version where we apply
a beamformer calculated using previous segment’s data, to a current
segment, also performed well with a far-field ASR model. Offline
neural mask-based beamforming was still better for the 7-mic array
since it had access to utterance boundary information and processes
a single utterance as a whole.

5. CONCLUSIONS

This paper analyzed the robustness of neural mask-based beamform-
ing as a front-end for an ASR system with respect to changes in
the recording hardware, a mismatch between the characteristics of
the data used for training the neural mask estimator and the test
data, under different ASR backend models and with and without on-
line processing constraints. Rather than using the BCE between the
predicted and the target masks, a new feature level objective func-
tion, the MSE between clean and noisy ASR features was intro-
duced, which led to 8% relative WER improvement. The NN-based
beamformer also outperformed an engineered beamformer tuned to
the recording hardware when batch offline processing was consid-
ered. For online processing, better results were obtained with a
segment-level online beamforming technique for a far-field acous-
tic model than with frame-level processing while the frame-level ap-
proach might be favorable in certain scenarios and still yielded ASR
performance gains.
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