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ABSTRACT

Synthetic x-ray computed tomography (CT) images derived
from magnetic resonance imaging (MRI) is a recent area of
focus for medical imaging researchers for applications in at-
tenuation correction in simultaneous PET/MRI systems and
MRI-guided radiotherapy planning. Several research groups
have demonstrated the potential of deep learning to gener-
ate the synthetic CT images, however, there are several ma-
jor open questions that remain with this approach. We inves-
tigated how the selection of MRI inputs affect the resulting
output using a fixed network. We found that Dixon MRI may
be sufficient for quantitatively accurate synthetic CT images
and ZTE MRI may provide additional information to capture
bowel air distributions.

Index Terms— synthetic ct, deep learning, mri, Dixon
mri, zero echo-time mri

1. INTRODUCTION

Synthetic CT images are used for applications where CT
images are required but are unavailable, such as in positron
emission tomography (PET) attenuation correction in simul-
taneous PET/MRI systems and MRI-guided radiotherapy
planning.

Four different MRI protocols are typically used for syn-
thetic CT generation: conventional T1- or T2-weighted MRI
[1, 2], Dixon MRI [3], UTE MRI (RESOLUTE) [4], and
ZTE MRI [5]. The major advantage of using Dixon MRI,
UTE MRI, and ZTE MRI over conventional MRI is that they
have been found to have signal intensity correlations with
Hounsfield units: Dixon MRI fractional fat/water maps have a
linear relationship in fat compartments; UTE MRI R2* map-
ping has a non-linear relationship in soft tissues and bone;
and ZTE MRI proton-density signal intensity has log-linear
relationships in bone.

Synthetic CT images must be both quantitatively and geo-
metrically accurate. MRI radiotherapy planning requires pre-
cise bone geometry measurements to accurately register plan-
ning imaging results and in-room imaging during treatment.
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In PET attenuation correction, the quantitative accuracy is
more important than anything else, since this is used for cor-
recting for radiotracer uptake. Any errors in the synthetic CT
will propagate to the PET images.

Various image processing and machine learning methods
have been used to turn these MRI images into synthetic CT
images [6]. Most recently, synthetic CT generation methods
have been utilizing deep learning. The deep learning task
is essentially image transformation: MRI images are con-
verted into synthetic CT images. Results from prior work
have demonstrated the potential for deep learning to produce
synthetic CT images [1, 2, 7]. However, several major open
questions remain with this approach: it is not clear what MRI
images would produce the best synthetic CT images; it is not
known how the selection of the inputs affect the resulting out-
put; and it is not clear what kinds of networks would do the
best job. To begin to answer these questions, this paper uses
different combinations of input images with deep learning and
assesses the resulting synthetic CT images. This work is fo-
cused on the pelvis, where synthetic CTs are useful for eval-
uation of prostate cancer and other pelvic malignancies.

2. METHODOLOGY

Patients with pelvis lesions were scanned using an integrated
3 Tesla time-of-flight (TOF) PET/MRI system [8] (SIGNA
PET/MR, GE Healthcare, Waukesha, WI, USA). The patient
population consisted of 26 patients (Age = 58.1± 14.2 years
old, 15 males, 11 females): ten (10) patients were used for
training and sixteen (16 patients) were used for validation.

The following MRI sequences were acquired: Dixon MRI
(FOV = 500× 500× 312 mm, resolution = 1.95× 1.95 mm,
slice thickness = 5.2 mm, slice spacing = 2.6 mm, scan time
= 18 s) and ZTE MRI (cubical FOV = 340× 340× 340 mm,
isotropic resolution = 2×2×2 mm, 1.36 ms readout duration,
FA = 0.6o, 4µs hard RF pulse, scan time = 123s). The Dixon
fat and water maps were produced by the scanner reconstruc-
tion software.

Helical CT images of the patients were acquired sepa-
rately on different machines and were co-registered to the MR
images using the ANTS [9] registration package using the
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SyN diffeomorphic deformation model with combined mu-
tual information and cross-correlation metrics. Multiple CT
protocols were used with variable parameter settings (110 -
130 kVp, 30 - 494 mA, rotation time = 0.5 s, pitch = 0.6 -
1.375, 11.5 - 55 mm/rotation, axial FOV = 500 - 700 mm,
slice thickness = 3 - 5 mm, matrix size = 512× 512).

The same methodology in our previous work was used
for MRI and CT image pre-processing and co-registration [5].
This included N4 bias correction [10] and soft-tissue normal-
ization for ZTE images. A similar pre-processing was done
for Dixon T1-weighted images: N4 bias correction was ap-
plied and the signal intensities were normalized to the fat peak
in the image histogram.

Figure 1 shows the different MRI inputs used for this
work: bias-corrected soft-tissue normalized proton-density-
weighted ZTE, bias-corrected and fat-peak normalized Dixon
T1-weighted image, Dixon fractional fat map, and Dixon
fractional water map.

A previously-published deep convolutional neural net-
work for synthetic CT generation was used [7] and the same
training methodology and synthetic CT generation for the
network was performed. The combinations of MRI inputs
used were as follows:

1. ZTE + Dixon fractional fat + Dixon fractional water
(ZeDD) [7]

2. ZTE only
3. Dixon T1-w + Dixon fractional fat + Dixon fractional

water (Dixon-all)
4. Dixon T1-w only
5. Dixon fractional fat + Dixon fractional water (Dixon

fat/water)
6. ZTE + Dixon T1-w + Dixon fractional fat + Dixon frac-

tional water (MRI-all)

Qualitative analysis of the training curves of the differ-
ent combinations of MRI inputs was performed. Visual in-
spection of the synthetic CT images was performed to ob-
serve any qualitative differences. The quantitative analysis of
the synthetic CT images was performed only in body voxels
(synthetic CT > -120 HU AND CT > -120 HU) to elim-
inate any errors due to air. The mean absolute error was
measured over the whole body, in soft-tissues (-120 to 100
HU), in spongeous bone (100 to 300 HU), and cortical bone
(> 300 HU) across the validation dataset. Additionally, the
synthetic CT images were down-sampled to a resolution of
4.69 × 4.69 × 2.81 mm and filtered with a 10 mm Gaus-
sian kernel in the quantitative analysis to simulate the pre-
processing step used for producing PET/MRI attenuation co-
efficient maps.

Fig. 1. Different MRI input images used for generating the
synthetic CT images.

Fig. 2. Training loss curves for each combination of MRI
inputs.
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3. RESULTS

Figure 2 shows the training curves for each combination of
MRI inputs. Each training converged at approximately 20
thousand iterations. ZTE only inputs achieved the highest
training loss, MRI-all achieved lowest training loss, while all
other inputs provided very similar training behaviors at about
0.7 total training loss.

Figure 3 shows the synthetic CT images produced with
the different combinations of MRI inputs and the ground-
truth CT for one patient in the validation set. Similar to the
training curves shown in Figure 2, the ZTE-only synthetic
CT appeared significantly different, qualitatively, compared
to the other synthetic CT images. All the other synthetic
CT methods provided excellent depiction of soft-tissues and
bone. However, only the ZTE-based methods were able to
produce bowel air in the synthetic CT images. Difference im-
ages for each synthetic CT method with ground truth CT are
shown in Figure 4.

Figure 5 shows the mean absolute error of each synthetic
CT compared to ground-truth CT. A summary of the errors is
shown in Table 1. As expected from previous figures, ZTE-
only synthetic CT produced the most error across the whole
body. In each specific tissue compartment, ZTE-only had
the largest errors. For the other synthetic CT images, ZeDD,
Dixon-all, Dixon T1-w only, Dixon fat/water only, and MRI-
all were comparable in the soft-tissue compartments. Dixon-
all, Dixon T1-w, and MRI-all were comparable in bone com-
partments and had less error than ZeDD and Dixon fat/water.
Although MRI-all provided the lowest training loss, the mean
absolute error did not differ by more than 5 HU from Dixon-
all and Dixon T1-w only.

4. DISCUSSION

Several groups have now demonstrated that deep learning
can effectively produce synthetic CT images from MRI. This
work extends on this idea, evaluating what types of MRI
inputs are required. We found that, in the pelvis, using only
T1-weighted MRI as the input was effective at generating
synthetic CT. This was a surprising result, as we expected
ZTE MRI would provide additional bone information that
could improve the synthetic CT. One possible explanation is
that the bone regions on T1-weighted MRI in the pelvis are
well-defined by the lack of signal, and thus the non-zero sig-
nal in bone with ZTE MRI is not required. The ZTE MRI also
experiences blurring due to fat chemical shift, which may cre-
ate some blurring around bone marrow and intra-abdominal
fat in the resulting synthetic CT.

One limitation of this study is that we did not explore
network architecture optimizations for the different combina-
tions of input images. We also could not examine the quan-
titative accuracy of bowel air. This is because there is no
gold-standard CT for training, as the bowel air will shift be-

tween CT and MRI scans. Qualitatively we observed that the
synthetic CT that utilized ZTE as an input would have some
bowel air in certain patients. All other synthetic CT meth-
ods did not produce any bowel air, which suggests that ZTE
provides additional information for distinguishing bowel air.

These results in the pelvis may not generalize to other
anatomical regions. For the brain in particular, the major chal-
lenge is to distinguish bone and air in the sinuses. This may
particularly benefit from ZTE MRI data.

Based on this work, we could explore further optimiza-
tions of the MRI inputs, such as spatial resolution, degree of
T1-weighted contrast and scan time to further improve syn-
thetic CT generation.

5. CONCLUSION

We investigated the effects of having different combinations
of MRI inputs to generate synthetic CT images with a deep
convolutional neural network model. We found that, in the
pelvis, Dixon MRI may be sufficient to produce quantitatively
accurate synthetic CT images.

Fig. 3. Resulting synthetic CT images using different com-
binations of MRI inputs. Note that the methods that utilized
ZTE were able to produce bowel air while the others filled it
with soft-tissue HU values.
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Fig. 4. Difference images of (A) ZeDD, (B) Dixon-all, (C) Dixon fat/water, (D) Dixon T1-w only, (E) ZTE only, and (F)
MRI-all with ground truth CT for one slice in the pelvis for one patient. The difference images show good quantitative accuracy
of Dixon-all, Dixon T1-w only, and MRI-all compared to the other synthetic CT methods.

Fig. 5. Mean absolute error for each synthetic CT generated from different MRI inputs (columns) in the whole body and
different tissue compartments (rows). Each line in a cell corresponds to one patient. The models saved at iteration 45,000 were
used.

Table 1. Mean absolute error (mean ± standard deviation) for each synthetic CT across patients for each tissue type.
ZeDD Dixon-all ZTE only Dixon T1-w only Dixon fat/water only MRI-all

Whole volume 31.85± 7.86 28.80± 8.07 47.15± 6.58 29.81± 7.57 31.65± 7.89 29.05± 7.76
Soft tissues 23.19± 6.32 21.93± 6.53 36.44± 4.59 23.33± 5.88 22.11± 6.06 22.46± 6.21
Spongeous bone 75.73± 19.65 65.66± 19.00 95.56± 13.67 62.72± 17.79 81.81± 24.85 62.44± 18.55
Cortical bone 131.23± 43.26 104.05± 41.36 181.41± 37.55 104.07± 42.51 135.65± 46.08 101.9± 39.65
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