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ABSTRACT

In this work, we propose a learning-based variational net-
work (VN) approach for reconstruction of low-dose 3D com-
puted tomography data. We focus on two methods to decrease
the radiation dose: (1) x-ray tube current reduction, which
reduces the signal-to-noise ratio, and (2) x-ray beam inter-
ruption, which undersamples data and results in images with
aliasing artifacts. While the learned VN denoises the current-
reduced images in the first case, it reconstructs the undersam-
pled data in the second case. Different VNs for denoising
and reconstruction are trained on a single clinical 3D abdom-
inal data set. The VNs are compared against state-of-the-art
model-based denoising and sparse reconstruction techniques
on a different clinical abdominal 3D data set with 4-fold dose
reduction. Our results suggest that the proposed VNs enable
higher radiation dose reductions and/or increase the image
quality for a given dose.

Index Terms— computed tomography, medical imaging,
compressed sensing, machine learning, variational networks

1. INTRODUCTION

Throughout the last decades, computed tomography (CT) has
become a standard tool for diagnostic radiology. However,
the radiation dose employed in clinical CT examinations has
heightened concerns about potential risks for patients under-
going recurrent imaging [1]. To reduce these concerns, nu-
merous radiation dose reduction techniques have been pro-
posed, including tube current modulation [2], adaptive col-
limators [3], reduced tube current and iterative model-based
denoising [4]. However, these x-ray tube current reduction
methods are inherently limited by the minimal useful tube
current and in practice only moderate dose reductions in the
order of 30-40% are clinically accepted.
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A different approach to reduce radiation dose is motivated
by compressed sensing (CS) theory [5]. The idea of com-
pressed sensing is to exploit the natural fact that images are
compressible in a transform domain to significantly reduce
the number of measurements without losing relevant infor-
mation. CT images are naturally compressible and thus es-
pecially suitable for the application of CS as omitting pro-
jections results in additive incoherent low-value streaking ar-
tifacts. The application of CS to CT was already proposed
in one of the original CS publications [5], and soon after
that, angular undersampling schemes were introduced for 2D
imaging [6]. The first practical CS method for clinical scan-
ners (SparseCT) was recently proposed using the concept of
a moving multi-slit collimator, which will block x-rays in an
incoherent way along the angular and slice dimensions [7].
Instead of omitting entire angular views, which distributes
aliasing artifacts only along slices, a different subset of pro-
jection slices is blocked for each angle such that the aliasing
artifacts are distributed along different views and slices si-
multaneously. This increases the incoherence of the aliasing
artifacts and thus performance of CS reconstruction.

Both denoising of low-current data and reconstruction of
undersampled data use an iterative algorithm based on image
models and regularization functions to exploit prior knowl-
ege, for example sparsity in a transform domain. Image mod-
els are usually very simple (e.g. finite differences) and do not
capture the complexity of medical images, and the procedure
to tune regularization parameters is empirical. A promising
alternative to these limitations in medical imaging is machine
learning to learn transforms, regularization functions and pa-
rameters from training data sets [8]. Initial work on deep
learning for low-dose CT has shown advantages over stan-
dard denoising and sparse reconstruction methods [9, 10, 11].
Those approaches applied a U-net-like structure to learn a
mapping from an initial low-dose filtered back-projection re-
construction to a full dose reference. [12] extended this idea
by learning a convolutional neural network that denoises con-
tourlet transform coefficients of low-dose reconstructions.

In this work, we propose to apply deep learning, in par-
ticular variational networks (VNs) [13], to learn suitable de-
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noising and reconstruction schemes for low-dose 3D CT, such
as tube current reduction and interrupted-beams (SparseCT).
Different VNs for denosing and reconstruction are trained us-
ing one in vivo clinical 3D abdominal data set. The perfor-
mance of the VNs for radiation dose reduction is compared
against state-of-the-art denoising and sparse reconstruction
techniques.

2. METHODOLOGY

2.1. Data acquisition model

In CT, the post-log data d ∈ RP consisting of P x-ray projec-
tions, can be represented as

d = Au+ n , (1)

where u ∈ RM×N×D is the imaged volume, which is typ-
ically measured in Hounsfield units (HU), and n represents
the noise of the measurement, which depends on the x-ray
tube current and the thermal noise in the detectors and due to
preprocessing steps and for the sake of simplicity is assumed
to be Gaussian. A : RM×N×D 7→ RP is the forward acqui-
sition operator that incorporates the scanner geometry, and in
the case of interrupted-beam (SparseCT), the undersampling
pattern.

2.2. Variational reconstruction for CT

The inverse problem of reconstructing the image u from the
noisy and possibly undersampled measured data d can be
solved using the following variational optimization problem

min
u
F (u) := β‖∇u‖1 +

1

2
‖Au− d‖22 , (2)

where the `1-norm of the gradients enforces sparsity of the
volume gradients and β ≥ 0 balances regularization against
data consistency. Since the operator A involves the compu-
tation of P > 108 detector responses, i.e., the line integral
along each x-ray, each operator evaluation during the course
of optimization is costly. A suitable choice to optimize (2) is
the primal-dual algorithm with linesearch [14].

2.3. Learning VNs for CT

To avoid empirical tuning of the weighting parameter β and
describe higher-order features of CT images, we apply train-
able fields of experts [15] type priorsRc(u) : RM×N×D 7→ R
of the form

Rc(u) = 〈1, φc(Kcu;Wc)〉 , (3)

where the operator Kc : RM×N×D 7→ RM×N×D×Nk stacks
Nk 3D convolution operators Ki

c : RM×N×D 7→ RM×N×D.
Every convolution filter has a corresponding potential func-
tion φic(·;wic) : R 7→ R that is point-wise applied to the filter

u0 −∇f1
{TCR,SCT}(ut) +

u1· · · −∇fT
{TCR,SCT}(uT−1) +

uT

(a) Variational Network (VN) structure for CT

ut−1
Kc(t) -φ′c(t) K∗c(t) +

· − u0 -λc(t)

ut

(b) VU for CT denoising

ut−1
Kc(t) -φ′c(t) K∗c(t) +

A>(A · −d) -λc(t)

ut

(c) VU for CT reconstruction

Fig. 1. Illustration of the VN for CT (a) and the variational
units (VU) for (b) CT denoising and (c) CT reconstruction.

response and parameterized by wic ∈ RNw . All these func-
tions are grouped into φc(·,Wc) and their parameters (wic)

Nk
i=1

into Wc.
VNs [13] are applied based on the above regularization

for two cases of radiation dose reduction: (a) tube current re-
duction (TCR) and (b) interrupted-beam or SparseCT (SCT).
In the TCR case, we learn a VN for “denoising” an initially
reconstructed volume u0. The corresponding energy of this
VN is defined as

FTCR :=

C∑
c=1

f cD(u) = Rc(u) +
λc
2
‖u− u0‖22 . (4)

In the SCT case, we include the forward operator and the mea-
sured data in the reconstruction process. The forward operator
adds additional knowledge about the known undersampling
pattern to facilitate reconstruction from undersampled data.
Consequently, the related energy of this reconstruction VN
reads as

FSCT :=

C∑
c=1

f cR(u) = Rc(u) +
λc
2
‖Au− d‖22 . (5)

The parameters of each corresponding VN are grouped into
an individual parameter set θ{TCR,SCT} = {Wc,Kc, λc, c =
1 . . . C}. For both VNs we define the variational unit in anal-
ogy to [13] as

ut = ut−1 −∇f c(t){TCR,SCT}(ut−1) , (6)

where the component selection function is c(t) = mod(t, C)+
1 and the gradients of the energy components are defined as

∇f cTCR(u) = K>c φ
′
c(Kcu;Wc) + λc(u− u0) (7)

∇f cSCT (u) = K>c φ
′
c(Kcu;Wc) + λcA

>(Au− d) . (8)

The output uT of the VNs is generated by applying T steps
of the form (6) starting with u0, see Fig. 1.

We parameterize the activation functions φic(·) by linearly
interpolating between Nw = 31 equally distributed bins in

6688



the interval [−1.2, 1.2]. In each of the T = C = 10 steps, we
use Nk = 48 convolution filter of size 15 × 15 × 3, which
results in a total number of 338,890 parameters. Note that
the VNs in this setup can be interpreted as trainable reaction
diffusions [16].

Given a set of training samples (us0, u
s
tar)

S
s=1, we define

the training problem of the VNs as

min
θ∈T

S∑
s=1

T∑
t=1

αt
2
‖bs � (ust − ustar)‖22 , (9)

where ust is the output of a VN step and αt is 1 for t = T
and 0.1 else. We use the binary mask bs ∈ {0, 1}M×N×D to
train on the Z central slices where ustar ∈ [0, 1] such that the
background and the sparsely sampled volume edges along the
z-axis are masked out. The symbol � indicates a point-wise
multiplication. In analogy to [13] the set T enforces con-
straints on the parameters such as λc ≥ 0 and that all convo-
lution filters have zero-mean and their 2-norm is bounded by
1. We minimize (9) using the Adam optimizer [17] and set the
step size to 4e−4 and the moments to β1 = 0.9, β2 = 0.999.
Note that after each gradient step of Adam we perform a back
projection of the parameters θ{TCR,SCT} onto T .

2.4. Experimental setup

To train and test the models, we used two 3D in vivo ab-
dominal CT data sets acquired on different patients using a
Siemens Definition AS scanner. The training scan was ac-
quired with tube current modulation turned on, using a refer-
ence mAs of 320 and tube voltage 100 kV (CTDIvol = 12.9
mGy), whereas, the test scan used a reference mAs of 240
and tube voltage of 120 kV (CTDIvol = 21.19mGy). We
split the CT data of each scan into batches such that each
batch contained all projections of a full gantry rotation P =
108, 527, 616, resulting in 17 training samples and 16 test
samples. For each batch we reconstructed a volume of size
384 × 384 × 30 and used the Z = 9 central slices in the
computation of the loss (9). We computed the target volumes
ustar by solving(2) with β = 1 using [14] on the full dose and
fully-sampled CT data. In the same fashion we computed the
initial estimates us0 with β = 1e−9 using the fully-sampled
low-dose data, simulated as in [18], in the TCR case and the
subsampled full dose data in the SCT case. In addition, we
scaled the volumes for both training and test set such that
the interesting Hounsfield unit interval [−200, 280] is mapped
onto [0, 1] to ease the training of the parameters.

3. RESULTS

We evaluated the reconstruction quality of the proposed VNs
for TCR and SCT on the test scan. In Table 1, we quantita-
tively compared our results to state-of-the-art reconstruction
and denoising CT methods by means of root mean squared er-
ror (RMSE) to the target reconstruction. Additionally, Fig. 2

VN TV β = 2 SAFIRE [4]
TCR 14.49± 2.55 - 24.13± 2.98
SCT 12.27± 1.34 13.46± 1.73 -

Table 1. Quantitative comparison of the different CT meth-
ods by means of RMSE to the target utar, measured in HU.
The results in the first row were computed using a 75% dose
reduction by means of TCR and the VN for CT denoising
FTCR(u). In the second row the results were computed us-
ing the same dose reduction with SCT and the VN for CT
reconstruction FSCT (u).

and Fig. 3 depict abdominal slices for both considered dose
reduction methods for qualitative comparison.

The proposed VN for TCR outperforms SAFIRE [4],
which is a commercial state-of-the-art denoising technique
from Siemens, in terms of noise reduction and RMSE, at
the expense of slight smoothing. Note that in the TCR case
neither SAFIRE nor the learned VN were capable of re-
constructing the fine vessels in the central slice in Fig. 2,
indicated by the red ellipses.

In the case of SparseCT, the learned VN reconstruction
presents higher removal of aliasing artifacts and less smooth-
ing in conjunction with lower RMSE than the TV reconstruc-
tion of the 4-fold undersampled data. Moreover, the fine ves-
sels in the liver are captured by both VN and TV reconstruc-
tion, as highlighted by the red ellipses. The improved per-
formance of the VN for SCT over TV is likely due to better
representation of complex image texture and the selection of
regularization parameters. The VN for SCT also presented
lower RMSE than the VN for TCR (Table 1), which high-
lights the advantages of beam-interruption over tube current
reduction for the same dose reduction factor.

4. CONCLUSION

The learned VNs outperform state-of-the-art denoising and
sparse reconstruction techniques for low-dose CT, which
would enable higher radiation dose reductions and/or in-
creases the image quality for a given dose. Compared to
other deep learning approaches, our proposed VN architec-
ture does not require several data sets due to the small model
size and the large dimensionality of 3D CT data. Our learned
reconstruction for undersampled data (SCT) presents im-
proved performance compared to the learned denoising of
reduced-current data (TCR), which is in concordance with
previous results and in part due to the reduced sensitivity of
undersampling to electronic noise compared to current reduc-
tion. Future work will study the use of ordered-subsets to
speed up the training process and evaluate the performance of
the variational deep learning for higher radiation-dose reduc-
tions and realistic undersampling cases based on the multi-slit
collimator proposed in SparseCT.
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(a) utar

(b) TCR VN

(c) SAFIRE

Fig. 2. Representative slices for denoising of in vivo abdominal test data using 75% dose reduction by TCR. The purple boxes
report RMSE values. (a) Target: TV (β = 1) reconstruction of the fully-sampled high dose data, (b) VN reconstruction using
T = 10 steps and (c) SAFIRE [4] reconstruction. The VN presents higher noise reduction than SAFIRE without compromising
image resolution. However, low-contrast features, such as the vessels in the red ellipse, were not adequately reconstructed.

(a) utar

(b) SCT VN

(c) TV β = 2

Fig. 3. Representative slices for reconstruction of in vivo abdominal test data using 4-fold undersampling (SCT). The purple
boxes report RMSE values. (a) Target: TV (β = 1) reconstruction of the fully-sampled high dose data, (b) VN reconstruction
using T = 10 steps and (c) TV reconstruction with β = 2. The VN outperforms TV in terms of residual aliasing suppression.
It is also able to adequately reconstruct the vessels in the liver, which shows the advantages of SCT over TCR for CT.
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