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ABSTRACT

Breast density classification is an essential part of breast can-
cer screening. Although a lot of prior work considered this
problem as a task for learning algorithms, to our knowledge,
all of them used small and not clinically realistic data both for
training and evaluation of their models. In this work, we ex-
plored the limits of this task with a data set coming from over
200,000 breast cancer screening exams. We used this data to
train and evaluate a strong convolutional neural network clas-
sifier. In a reader study, we found that our model can perform
this task comparably to a human expert.

Index Terms— convolutional neural networks, deep
learning, mammography, breast cancer screening, breast den-
sity

1. INTRODUCTION

Although convolutional neural networks (CNNs) are highly
successful in a variety of applications [1], they have received
little attention in medical image analysis until recently. This
has been primarily due to the lack of availability of large pub-
lic data sets. One of the significant areas for development
in medical image analysis is breast cancer screening. Even
though performing full diagnosis by the means of a neural
network remains a challenge [2], elements of achieving this
wider goal are feasible with current state of the art methods.
In this paper, we explored one of them, namely breast density
classification.

Mammographic density reflects the composition of fi-
broglandular and fat tissue of a breast as seen on a mam-
mogram. In clinical practice in the United States, breast
density is qualitatively categorized into four types: a) almost
entirely fatty, b) scattered areas of fibroglandular density, c)
heterogeneously dense and d) extremely dense. The last two
categories are considered “dense” [3]. Dense breast tissue
reduces the effectiveness of mammography because it has a
“masking effect” and will hide an underlying tumor. Studies

also consistently show an increased risk of developing breast
cancer in women with high mammographic density compared
with women with low mammographic density.

Masking of cancer by dense tissue has become a political
issue with women requesting supplemental tests if they have
dense breasts. There are currently states in the US that man-
date women receive notification about breast density with
their mammography results. Due to significant variability
in the radiologist’ assessment of breast density, computer
methods have been developed to improve consistency. One of
them, Cumulus, is a software program requiring manual in-
put to outline and measure the area of breast tissue relative to
overall breast area [4, 5]. Recently, automated programs have
been developed that measure percent density as a function of
area or volume. Several automated density programs have
demonstrated high reproducibility [6] and correlation with
volumetric density as measured by MRI [7]. However, these
commercially available products do not involve any learning,
therefore they lack the flexibility and robustness of learning
models. On the other hand, all learning models in literature
were trained and tested with small amounts of data. Hence
there still is a need to have a precise automated assessment of
breast density based on learning directly from data.

2. DATA

We used a clinically realistic data set of over 200,000 screen-
ing mammography exams, each containing at least four im-
ages corresponding to the standard four views used in screen-
ing mammography [2]. Each exam is assigned a BI-RADS
(Breast Imaging Reporting and Data System) label indicat-
ing a diagnosis of a radiologist. For the purposes of this re-
search, we supplemented this data with labels corresponding
to breast density, which we automatically extracted from the
textual reports associated with the exams in our data set. A
small number of exams in our original data did not have the
information on breast density in the corresponding textual re-
port. We excluded 519 such exams from the data set, which
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left us with the total of 201,179 exams, containing 19,939
class 0, 85,665 class 1, 83,852 class 2 and 11,723 class 3 ex-
ams. Interestingly, analysis of our data confirms that women
who were assigned overall BI-RADS 0 (“incomplete”) label
in their screening mammography tend to have denser breasts
than the ones who were assigned BI-RADS 1 (“normal”) and
BI-RADS 2 (“benign”) labels (cf. Table 1).

almost entirely fatty (0)
scattered areas of

fibroglandular density (1)

heterogeneously dense (2) extremely dense (3)

Fig. 1. Examples of the four breast density classes.

Table 1. Distribution of labels in our data set. The numbers
in the bottom row are numbers of exams falling into different
breast density categories. The numbers in the rightmost col-
umn are the numbers of exams falling into different overall
BI-RADS classes.

breast density category
0 1 2 3

B
I-

R
A

D
S 0 1702 9607 12656 1839 25804

1 9803 40060 37167 5157 92187
2 8434 35998 34029 4727 83188

19939 85665 83852 11723

3. MODELS

3.1. Baselines

The most common method to perform the task of breast den-
sity prediction in literature is training a classifier with features
based on histograms of pixel intensity in the image [8]. This
simple method is surprisingly effective. The reason why it
works can be easily understood. The difference between pixel
intensity occurs because mammograms with a predominance
of fat appear darker than the ones with a fibroglandular tissue.
This is because this type of tissue absorbs much of the radi-
ation whereas the adipose tissue allows the radiation to get
through more easily.

In this work, we used such a model as a baseline. We
took pixel intensity histograms as features and used soft-
max regression as a classifier. For each of the four standard
views used in screening mammography, L-CC (left cranial-
caudal), R-CC (right cranial-caudal), L-MLO (left medio-
lateral oblique) and R-MLO (right mediolateral oblique),
separately, we split intensity values into predefined bins, we
normalized them such that frequencies of different bins sum
to one and then concatenated such feature vectors. Addition-
ally, to make this model more flexible, we trained a version of
it with an extra hidden layer with 100 hidden units between
the input and the softmax regression layer. The hidden layer
used rectifier linear function as an activation function.

3.2. Deep convolutional neural network

We used a multi-column deep convolutional neural network
of an architecture loosely inspired by the earlier work of
Simonyan et al. [9]. The input to the network is four
2600×2000 images corresponding to the standard views used
in screening mammography. It is very similar to the archi-
tecture in [2] with the exception of the number of the outputs
in the softmax layer, since the breast density classification is
a four-way classification problem (and not a three-way clas-
sification problem as the overall BI-RADS classification).
We kept the same values of the hyperparameters too. An
overview of our architecture is shown in Figure 2.

Classifier p(y|x)
Fully connected layer (1024 hidden units)

Concatenation (256×4 dim)

DCN DCN DCN DCN

L-CC R-CC L-MLO R-MLO

Fig. 2. An overview of the structure of the convolutional neu-
ral network used in our experiments. DCN in the figure above
denotes a series of convolutional and pooling layers (please
see [2] for details). L-CC, R-CC, L-MLO and R-MLO refer
to inputs corresponding to the four standard views in screen-
ing mammography.
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4. EXPERIMENTS

We sorted the patients according to the date of their latest
exam and divide them into training (first 80%), validation
(next 10%) and test (last 10%) sets. For the test phase, we
kept only the most recent exam for each patient. This way of
partitioning the data allows us to estimate performance of our
classifiers on future data accurately. We followed the exper-
imental protocol in [2], otherwise we state it explicitly when
we have deviated from it. In all experiments, we used data
augmentation only during training. During the validation and
test phases all augmentations were off. For all models, we
picked the best epoch according to the accuracy on the vali-
dation set.

In the baseline model based on histogram features, we
used the Adam algorithm with the initial learning rate of
10−3. We tuned the number of bins of pixel intensity his-
togram, using the validation data to select between 10, 20, 50
and 100.

4.1. Evaluation metrics

Our primary metric in this work is the standard classification
accuracy. As the levels of breast density correspond to relative
increases in the amount of fibroglandular tissue, two consec-
utive labels can be confused even by an experienced radiolo-
gist. This is why we also considered top-k accuracy. In this
metric we consider a prediction to be correct if the ground
truth is among the k most likely labels predicted. Top-k er-
ror is currently a popular performance measure on large scale
image classification benchmarks such as ImageNet and Places
[10]. Additionally, we also considered accuracy only between
the two superclasses: “dense” (classes 2 and 3) versus “not
dense” (classes 0 and 1).

Secondly, we evaluated our models with respect to the
area under the ROC curve (AUC), which is widely used for
measuring the predictive accuracy of binary classification
models. This metric indicates the relation between the true
positive rate and false positive rate when varying the classifi-
cation threshold. As AUC can only be computed for binary
classification, we computed AUCs for all four binary prob-
lems of distinguishing between one of the density categories
and the rest of the density categories, and then took the macro
average, abbreviated as macAUC.

4.2. Impact of the size of the data set

To explore the effect of data set scale, we trained separate net-
works on training sets of different sizes; 100%, 10% and 1%
of the original training set. The results are shown in Table 2.
Interestingly, even though training with more data increases
performance in all metrics, the difference is not large. In Fig-
ure 3 we show the ROC curves for the model trained with
100% of the data.

Table 2. Performance of our CNNs. The * symbol in the
leftmost column indicates that a model was initialized using
weights of a previously trained overall BI-RADS classifier
(cf. subsection 4.3).

data macAUC top-1 top-2 top-3 superclass
1% 0.888 0.729 0.967 0.998 0.849
10% 0.907 0.745 0.976 0.999 0.856
100% 0.916 0.767 0.982 0.999 0.865
*1% 0.892 0.733 0.974 0.998 0.848
*10% 0.909 0.753 0.980 0.998 0.856
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Fig. 3. ROC curves for all four classes. The classes 1 and
2 are the hardest for a neural network to distinguish from
the rest. The AUC values are 0.955, 0.888, 0.907, 0.960 for
classes 0, 1, 2, 3 respectively.

4.3. Transferring knowledge from BI-RADS classifier

Transfer learning aims to transfer knowledge between related
source and target domains [11]. In computer vision, exam-
ples of transfer learning include [12, 13, 14]. The main idea
of this technique is to overcome the deficit of training sam-
ples by adapting strong classifiers trained for another, related
but not identical, task. Considering the amount of parame-
ters in the CNN and the correlation between breast density
and overall BI-RADS (cf. Table 1), we applied the idea of
transfer learning to accelerate learning of our breast density
prediction network. To achieve that, we used the weights of
our model previously trained for breast cancer screening [2]
to initialize the parameters of the network trained for breast
density prediction. The two networks have an identical archi-
tecture, with the exception of the softmax layer. This layer of
the network trained for breast density prediction is initialized
randomly using the recipe from [15].

The models trained with such initialization perform bet-
ter than their counterparts, trained from scratch in almost all
metrics (cf. Table 2), however, only by a small margin. In-
triguingly, models initialized with parameters of a previously
trained overall BI-RADS classifier achieve the best perfor-
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mance in much fewer numbers of training epochs: 20 instead
of 50 when using 1% of the original training data 15 instead
of 25 when using 10% of the original training data.

4.4. Baseline results

Finally, we trained the baselines based on histograms of pixel
intensity. Both versions of the baseline model are trained with
10% of the original training set. The best baseline model
without the hidden layer is the one with 20 bins. It achieved
0.832 of macAUC, 67.9% of top-1 accuracy, 90.9% of top-2
accuracy, 99.4% of top-3 accuracy and 81.1% in distinguish-
ing between the “dense” and “not dense” superclasses. The
model using 10 bins is the best one for the version with one
hidden layer. It achieved 0.842 of macAUC, 69.4% of top-1
accuracy, 90.8% of top-2 accuracy, 99.2% of top-3 accuracy
and 82.5% accuracy for superclass classification.

5. COMPARISON TO HUMAN PERFORMANCE

To understand what the limit of performance possible to
achieve on this task is, we conducted a reader study with
human experts with different levels of experience. The three
participants in our reader study were: a medical student (S),
a radiology resident (R) and an attending radiologist (A). The
experts were all shown the same 100 exams randomly drawn
from the test set, each with at least four images corresponding
to the standard views used in screening mammography. For
each exam, the experts were asked to rank the breast density
classes from the most likely to the least likely according to
their judgement. The results of this experiment are shown in
Table 3. Additionally, we computed analogous values with
only two classes instead of the original four: dense breasts
(original classes 2 and 3) and not dense breasts (original
classes 0 and 1). The results of this experiment are shown in
Table 4. Both human experts and learning models achieve a
fair agreement with the labels in the data. Note that the agree-
ment between the predictions of our model and the labels in
the data are of similar magnitude to the agreement between
the humans themselves.

We also compared our best CNN model to an average of
the predictions of human experts. We achieved that by treat-
ing predictions of experts as one-hot vectors and averaging
them. In this experiment the humans achieved macAUC of
0.892 (class 0: 0.960, class 1: 0.812, class 2: 0.807 and class
3: 0.990), while the CNN achieved macAUC of 0.934 (class
0: 0.971, class 1: 0.859, class 2: 0.905 and class 3: 1.000).

6. RELATED WORK

Many previous approaches (cf. Table 2 in [16] for a com-
prehensive review) for this task involve two separate steps of
feature extraction and classification. Carneiro et al. [17] used
histograms and Haralick texture descriptors as an input to a

Table 3. Agreement (Cohen’s kappa) in choosing the most
likely class between different readers (S, R, A), our neural
network (N), our baseline (H) and labels in the data set (L).

L N H S R A
L 0.61 0.39 0.41 0.55 0.39
N 0.58 0.53 0.60 0.48
H 0.28 0.37 0.34
S 0.65 0.48
R 0.43

Table 4. Agreement (Cohen’s kappa) in distinguishing be-
tween dense breasts (classes 2 and 3) and not dense (classes 0
and 1) between different readers (S, R, A), our neural network
(N), our baseline (H) and labels in the data set (L).

L N H S R A
L 0.65 0.50 0.50 0.73 0.46
N 0.72 0.62 0.83 0.57
H 0.48 0.69 0.48
S 0.69 0.64
R 0.60

multilayer perceptron. In a similar vein of work, Kumar et
al. [16] developed an ensemble of six multilayer perceptron
networks trained with GLCM mean features. The approaches
by Thomaz et al. [18] and Fonseca et al. [19] applied con-
volutional neural networks too, however, only to extract fea-
tures for another classification model (MLP and SVM respec-
tively). Moreover, their results are obtained with a much
smaller dataset (less than one thousand exams) of low res-
olution images. To the best of our knowledge, our work is
the first end-to-end four-class breast density classifier using
supervised deep convolutional neural network on multi-view
mammography images. Crucially, we trained and evaluated
our models on a diverse clinically realistic data set of high res-
olution images, approximately two orders of magnitude larger
than any previous work we are aware of.

7. CONCLUSIONS

In this work, we trained and evaluated a deep convolutional
neural network classifier using a data set of unprecedented
size for the task of breast density classification. The level
of agreement between the trained classifier and the classes
in the data was found to be similar to that between the hu-
man experts and the classes in the data, as well as among the
human experts themselves. As observed in our reader study,
there is often poor intra-reader and inter-reader correlation in
the qualitative assessment of breast density tissue. This re-
sult strongly suggests that the proposed classifier may have
significant clinical relevance, as it provides a quantitative, re-
producible prediction.
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