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ABSTRACT
Segmentation of ventricles from cardiac magnetic resonance
(MR) images is a key step to obtaining clinical parameters
useful for prognosis of cardiac pathologies. To improve
upon the performance of existing fully convolutional network
(FCN) based automatic right ventricle (RV) segmentation
approaches, a multi-task deep neural network (DNN) archi-
tecture is proposed. The multi-task model can employ any
FCN as a building block, allows for leveraging shared fea-
tures between different tasks, and can be efficiently trained
end-to-end. Specifically, a multi-task U-net is developed and
implemented using the Tensorflow framework. Numerical
tests on real datasets showcase the merits of the proposed
approach and in particular its ability to offer improved seg-
mentation performance for small-size RVs.

Index Terms— Right ventricle segmentation, U-net, con-
volutional neural networks, multi-task learning

1. INTRODUCTION

The clinical relevance of the RV in cardiovascular diseases
such as cardiomyopathy is nowadays widely accepted [1]. To
assess RV function, MR imaging constitutes a rather power-
ful tool [2]. Here we will focus on estimating the endocardial
contours of the RV on short-axis cardiac cine MR images,
a problem referred to as RV segmentation. Once these con-
tours are estimated, several clinical parameters such as the
end-diastolic volume, end-systolic volume, and as a result the
RV ejection fraction, can be obtained [1]; note that the latter
is considered to be a prognostic indicator in cardiopulmonary
disorders [3].

Typically, RV segmentation is performed by medical
professionals, requiring approximately 15 minutes for a sin-
gle subject, while also being susceptible to inter and intra-
operator variability [2, 4]. The development of automatic
RV segmentation methods, such as the one examined in this
work, is therefore well motivated.

A number of deep learning based approaches have been
proposed in this context. In [5], a three step approach was de-
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veloped. In particular, the center of the RV is first estimated
using a convolutional neural network (CNN), followed by ini-
tial estimates of the contours using two stacked auto-encoders
(one for large and one for small-sized contours); a deformable
model, then, yields the final contour. In contrast to the com-
plex pipeline in [5], an RV segmentation approach based on
a FCN that is trained end-to-end has been proposed in [6].
Finally, several variants of FCN-based approaches have been
recently used for right ventricle segmentation; see for exam-
ple the 3D [7], multi-class [8], and times-series [9] FCN mod-
els that were recently devised for the MICCAI’17 automated
cardiac diagnosis challenge.

All the aforementioned FCN-based methods employ a
single model for all the training examples. It has been ob-
served, however, that their empirical segmentation perfor-
mance tends to be suboptimal for inputs with small-size RVs,
see e.g. [6, Fig. 4]. To boost the segmentation accuracy, [5]
divided the training data into two parts based on the area of
the RVs, and trained two separate neural networks for small-
and large-size RVs, respectively. While this can lead to im-
proved performance, the separated training strategy suffers
from three inherent inefficiencies. First, it is hard to decide
whether RVs are large or small in an automated fashion in
the test phase. Second, splitting the training data reduces
the number of training examples available for each neural
network while also rendering it impossible to leverage the
common features shared between large and small RV images.
Third, training two models is time consuming.

To overcome the aforementioned limitations, a multi-task
DNN for automated RV segmentation is put forth in this
work. The novel model merits a shared CNN module that
extracts features for three different tasks, namely classifying
whether the RV is small or large and generating segmentation
masks for small and large RVs. Furthermore, the segmen-
tation header for the small-size RV examples works with
cropped CNN features. This cropping strategy increases the
proportion of the image area covered by the RV, and as it will
become evident, it yields markedly improved segmentation
performance for small-size RVs. Intuitively, our multi-task
approach can be viewed as a scheme for enhancing the seg-
mentation accuracy for small objects by zooming in them for
a closer look. Although our multi-task approach works with
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any FCN model, a multi-task U-net is used in this work.
The performance of the developed multi-task U-net was

evaluated on the MICCAI’12 RV segmentation challenge
(RVSC) dataset [2]. Numerical tests showcase the improve-
ment in segmentation accuracy achieved by the multi-task U-
net over its single-task U-net counterpart. With only minimal
parameter tuning, the multi-task U-net achieves competitive
segmentation accuracy on the MICCAI ’12 RVSC test sets.

To the best of our knowledge, this is the first applica-
tion of multi-task DNNs to the problem of RV segmentation.
Nonetheless, multi-task learning has been employed in dif-
ferent tasks, see e.g., faster region-based CNN (R-CNN) for
object detection [10], mask R-CNN for instance segmenta-
tion [11], and multi-task DNNs for natural language process-
ing [12].

Notation. Lower- (upper-) case boldface letters denote
column vectors (matrices). The symbol > is reserved for
transposition. Finally, the operator ln(x) returns the natural
logarithm of x, whereas exp(x) denotes Euler’s number to
the power of x.

2. METHODOLOGY

Given N training pairs {(Xn,Yn)}Nn=1 of input matri-
ces Xn ∈ Rd1×d2 and the corresponding matrix outputs
Yn ∈ {0, 1}d1×d2 , our goal is to estimate the function f(X)

so that a certain loss 1
N

∑N
n=1 `(f(Xn),Yn) is minimized.

In the context of RV segmentation the given inputs {Xn} are
a series of cardiac MR images, whereas the outputs are manu-
ally labeled images whose pixel values are binary. Regarding
the latter, without loss of generality, assume that pixels within
the endocardium of the RV are labeled 1, while the rest are
labeled 0.

2.1. U-net

Since the relationships between Xn and Yn are complex,
f(X) is typically assumed to be a nonlinear function. To ren-
der nonlinear estimators tractable, kernel [13, 14] or DNN-
based approaches are commonly relied upon. More specifi-
cally, FCN-based approaches [15] are proving highly success-
ful in image segmentation tasks. Among the available variants
of 2D FCNs, the so-termed “U-net" has achieved remarkable
experimental results in medical image segmentation [16]. In
this subsection, a U-net tailored for RV segmentation is de-
vised. Compared to the original U-net in [16], the devised
U-net features less layers and as a result, much fewer param-
eters. This modification is well motivated since the number
of training examples for the RV segmentation task is limited.

The architecture of our U-net is shown in Fig. 1, where
C2, C4, C6, and C8 denote the feature maps obtained from
the 2nd, 4th, 6th, and 8th convolution stages, respectively. In
particular, the input image is first passed through 7×7 convo-
lutions followed by rectified linear units (ReLUs). The subse-

quent downsampling path consists of repeated application of
3× 3 convolutions, followed by ReLUs and max pooling op-
erations. The number of filters employed in the first to eighth
convolution stage is 32, 32, 64, 64, 128, 128, 256, and 256,
respectively. For all max pooling operations, the kernel size
is set to 2 × 2 and the stride is fixed to be 2. As a result, the
dimension of the features is halved after each max pooling
operation.

Since the segmentation task entails pixel-wise classifica-
tion, upsampling is necessary for obtaining an output that has
the same dimensions as the input. Specifically, the expansive
path, denoted by H1, starts with upsampling the feature map
C8 (cf. Fig. 1) by a factor of 2 by repeating each row and
column of the feature map twice. The upsampled features
are then concatenated with a copy of C6. This concatenation
turns out being beneficial as the lower level features contain
more accurate localization information, which is important
for improving segmentation accuracy. Repeated application
of convolutions, ReLUs, upsampling, and concatenation op-
erations follows the upsampling. In the final layer, the soft-
max activation function is used, after a 1 × 1 convolution, in
order to obtain a distribution over the number of classes for
each pixel.

Our U-net was implemented and trained using the Tensor-
flow framework. Unfortunately, U-net architecture alone may
not be sufficient for the challenging task of RV segmentation,
especially in the case of small RVs in the short-axis stack, as
it becomes evident in Fig. 4c; see also [6, Fig. 4]. Therefore,
we complement this architecture with a multi-task approach.

2.2. The proposed multi-task DNN model

The success of transfer learning indicates that lower levels of
CNNs can be viewed as feature extractors, where the obtained
features can be used for different learning tasks [17]. Based
on this observation, we will use the C8 features (cf. Fig. 1)
for inferring whether the RV in the input is small-sized or not,
in addition to using them for contour estimation. To that end,
a classification header consisting of two densely connected
layers is added on top of C8 as shown in Fig. 2.

Once we determine that the input has a small-size RV, we
can crop the image to a smaller size in order to get rid of
irrelevant information. Given that the RVs are always located
around the center of the input, one can simply center crop the
image rather than training an additional localization network
as in [5]. To segment the small-size RVs, another expansive
header denoted as H2 (cf. Fig. 2) is introduced, which has
the same structure as the expansive header H1 in Fig. 1. The
input to H2, however, is the cropped C8 (instead of the entire
map) since we know that our region of interest will be of small
size. In order to make the concatenation operation feasible,
the features from C6, C4 and C2 must be cropped as well.
Finally, the output of H2 is zero padded to ensure its spatial
dimensions are the same as those of the inputs.

6678



Fig. 1: Schematic representation of the employed U-net architecture. Each blue box represents a feature map, whereas while
boxes denote copied feature maps. The arrows stand for the different operations.

To summarize, our proposed multi-task DNN has three
distinct headers that are responsible for classifying the size
of RVs, segmenting the large-size RVs, and segmenting the
small-size RVs, respectively. Our approach, therefore, fea-
tures three outputs from a single model, which is trained end-
to-end using the whole dataset. Although we use the U-net
as a building block for the multi-task DNN, it is worth stress-
ing that the multi-task DNN can also be built on other FCN
models such as the one reported in [6].

Fig. 2: Headers for classifying and segmenting small RVs.

2.3. Multi-task DNNs: training and testing

In this subsection, the loss functions for the employed headers
will be detailed. Moreover, the joint training process, as well
as the deployment phase, will be outlined.

To train the classification header, each training example
needs to be labeled based on its RV contour size. To that
end, the average area of all the segmentation masks is first
computed as ᾱ =

∑N
n=1 αn, where αn denotes the area of

the segmentation mask of the nth image. Letting cn represent
the classification label of the nth image, we define cn := 1
for αn ≥ 0.45ᾱ and 0 otherwise, where the constant 0.45 is
selected empirically so that the number of small-size RVs is
about half of the number of large-size RVs. With the labels
{cn}Nn=1 obtained, the cross-entropy loss for the classification
header is given by

E0(w) = − 1

N

N∑
n=1

[cn ln pn(1) + (1− cn) ln pn(0)]

where w collects all the weight variables in the DNN, and
pn = [pn(0), pn(1)]> is the vector output from the classifi-
cation header for input Xn.

For the segmentation header H1, the cross-entropy loss is
used for the output at each pixel (i, j), yielding the following
per-example loss

`(P(1)
n ,Yn) :=− 1

d1d2

d1∑
i=1

d2∑
j=1

[Yn(i, j) lnP
(1)
n (i, j, 1)

+ (1− Yn(i, j)) lnP
(1)
n (i, j, 0)].

in which P
(1)
n denotes the tensor output from header H1 for

input Xn. Likewise, the per-example loss `(P(2)
n ,Yn) for

header H2 is defined. Subsequently, the loss functions for
headers H1 and H2 over all examples are given by

E1(w) :=
1

N

N∑
n=1

τ(cn)`(P
(1)
n ,Yn),

E2(w) :=
1

N

N∑
n=1

(1− τ(cn)) `(P
(2)
n ,Yn)

respectively, where τ(cn) equals 1 when cn = 1 and it is 0
otherwise.

In order to train the proposed model jointly (over w), we
use a multi-task loss in the training process, which is given by

E(w) = λ0E0(w) + λ1E1(w) + λ2E2(w)

with λ0, λ1, and λ2 denoting preselected non-negative weights
for the objective functions. When setting λ0 = λ2 = 0 and
{cn = 1}Nn=1, training our multi-task model boils down to
training its single-task U-net (cf. Fig. 1) counterpart. By
minimizing E(w), the weight variables w can be learned.

Regarding the deployment phase, when a new datum ar-
rives, the segmentation headers predict two masks. The out-
put is taken as the mask corresponding to the class predicted
by the classification header.

3. NUMERICAL TESTS

In this section the performance of the proposed multi-task
DNN will be evaluated on the MICCAI’12 RVSC dataset [2].
The original dataset comprises images of two different sizes,
that is, 256×216 and 216×256. For consistency, we rotate the
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(a) Input image (b) Ground truth mask (c) U-net prediction (d) Muti-task DNN prediction

Fig. 3: A sample image from the validation dataset with relatively large-size RV.

(a) Input image (b) Ground truth mask (c) U-net prediction (d) Muti-task DNN prediction

Fig. 4: A sample image from the validation dataset with relatively small-size RV.

latter ones so that all images have the same size (256× 216).
Subsequently, all images are center cropped to size 208×208.
Feature map C8 is further cropped to half its size before be-
ing fed into H2. To avoid overfitting, dropout with rate 0.5 is
used after C8. No additional preprocessing or data augmen-
tation techniques have been used. In order to obtain a single
contour, only the largest connected component is kept in the
output. No further post processing is performed. The hyper-
parameters λ0, λ1, and λ2 are selected as 1, 208, and 208,
respectively.

The first experiment assesses the performance of the U-
net and that of our multi-task DNN using the training dataset
only. To that end, the provided dataset is randomly shuffled
and split into 70/30% training/validation subsets. Both the U-
net and the multi-task DNN model are implemented leverag-
ing the Tensorflow framework [18] and they are trained using
the so-termed “Adam” optimizer for 100 epochs with a learn-
ing rate of 0.0001. The performance of the two models is
tested on the validation set after running each epoch. Among
the 100 runs, the highest mean Dice scores achieved for the U-
net and the multi-task DNN are 0.859 and 0.872, respectively.
The improvements in the Dice coefficient showcase the merits
of our multi-task DNN. The original input image, the ground
truth mask as well as the ones predicted by the U-net and the
multi-task DNN, for two sample examples in the validation
set, are shown in Figs. 3 and 4, where a white square signifies
a pixel within the RV. Notice that both models work well for
the input in Fig. 3, which has a large-size RV. However, when
the size of the RV is small, as shown in Fig. 4a, the multi-
task DNN still yields rather accurate segmentation while its
single task counterpart makes totally wrong predictions (cf.
Figs. 4c, 4d).

In the second experiment, the multi-task DNN is trained
using the whole training dataset for 100 epochs. The RV
endocardial contours for sets test1 (262 examples) and test2

(252 examples), predicted by the multi-task DNN, were
submitted to the challenge organizers for independent eval-
uation 1. The obtained mean Dice scores for the end di-
astolic/systolic (ED/ES) phases of set test1 and the corre-
sponding phases of set test2 are 0.839/0.714 and 0.874/0.767,
respectively. All the mean Dice scores achieved outperform
the ones obtained from the DNN outputs in [5]. The mean
Dice scores for sets test1 and test2 are 0.783 and 0.827, re-
spectively. Importantly, the mean Dice score for the whole
test set (0.805) corresponds to an (albeit limited) improve-
ment over that achieved (0.80) by a carefully tuned FCN
model in [6]. We also noticed some unpublished results on
Github [19], which use the Dice coefficient instead of the
negative cross-entropy as the training loss and obtain a mean
Dice score of 0.82.

4. CONCLUSIONS

This paper dealt with automated segmentation of the endo-
cardium of the RV. To improve the segmentation accuracy for
small-size RVs, a multi-task DNN model was developed, that
merits cropped inputs for small-size RVs, leverages the shared
features between different tasks, and enjoys end-to-end train-
ing. Numerical tests using our multi-task U-net demonstrated
the effectiveness of the novel approach.

Several improvements can be made to our multi-task
DNN model. Recently developed regularization approaches,
including batch and layer normalization, can be leveraged to
further enhance our model. Incorporating the Dice coefficient
loss, augmenting the training data, performing more care-
ful layer parameter tuning, employing deeper models, and
devising tailored post-processing stages in order to obtain
improved performance constitute current research directions.

1The ground truth contours for these sets are not publicly available.
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