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ABSTRACT
Model-Based Iterative Reconstruction (MBIR) has shown
promising results in clinical studies as they allow significant
dose reduction during CT scans while maintaining the di-
agnostic image quality. MBIR improves the image quality
over analytical reconstruction by modeling both the sensor
(e.g., forward model) and the image being reconstructed (e.g.,
prior model). While the forward model is typically based on
the physics of the sensor, accurate prior modeling remains
a challenging problem. Markov Random Field (MRF) has
been widely used as prior models in MBIR due to simple
structure, but they cannot completely capture the subtle char-
acteristics of complex images. To tackle this challenge, we
generate a prior model by learning the desirable image prop-
erty from a large dataset. Toward this, we use Plug-and-Play
(PnP) framework which decouples the forward model and the
prior model in the optimization procedure, replacing the prior
model optimization by a image denoising operator. Then,
we adopt the state-of-the-art deep residual learning for the
image denoising operator which represents the prior model
in MBIR. Experimental results on real CT scans demonstrate
that our PnP MBIR with deep residual learning prior signifi-
cantly reduces the noise and artifacts compared to analytical
reconstruction and standard MBIR with MRF prior.

Index Terms— Computed Tomography, Model-Based
Iterative Reconstruction, Plug-and-Play Framework, Deep
Residual Learning

1. INTRODUCTION

Model-Based Iterative Reconstruction (MBIR) has gained
increasing attention due to its superiority for low-dose CT
reconstruction compared with analytical methods such as
filtered-back projection (FBP) [1, 2, 3]. The benefit of MBIR
is due to incorporating modeling of physics of CT scanner
and desirable image properties into a reconstruction problem.
Among many modelings such as the forward projection and
electronic noise models, the image prior model plays a sig-
nificant role in the quality of MBIR. The general approach
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used in MBIR is to model the image as Markov Random
Field (MRF) [4], which penalizes intensity fluctuations in
the neighborhood [5, 6, 7]. However, MRF is not sufficient
to differentiate the noise-induced fluctuations in the image
because there is little prior information available about the
underlying object. In this paper, we instead generate the prior
model by applying machine learning techniques to a large
number of training images.

Even though the data-driven image model can accurately
capture the image properties of the underlying object, it is still
challenging to integrate it into MBIR as a prior model because
there is no explicit formula. To tackle this challenge, we use
the Plug-and-Play (PnP) framework [8, 9] which utilizes al-
ternating direction method of multipliers (ADMM) [10, 11]
for the MBIR optimization. ADMM splits the state variables
in MBIR cost function so as to decouple the forward and prior
model terms, resulting in two separate constrained optimiza-
tion tasks. This leads to two completely independent modules
for MBIR implementation: one module for reconstruction de-
pendent on the forward model, and the other module for de-
noising based on the prior model. With this PnP framework,
any denoising algorithm using machine learning techniques
can be used as a prior model for MBIR.

Then, we use the denoising algorithm based on deep
learning as a prior model for MBIR. In such algorithms, the
weights of a neural network are trained on large datasets,
and the trained neural network is applied to remove noise of
the unseen testing image [12, 13, 14, 15, 16]. While only
shallow neural networks can be trained in classic approaches
due to the high computational time needed, recent advances
in network architecture such as residual learning allow us
to learn much deeper neural networks [17, 18]. These deep
residual learning based methods show great success in low-
dose CT denoising [19, 20]. Therefore, we adopt the deep
residual learning based denoising operator as the prior model
for MBIR. Experimental results on real CT scans show that
PnP MBIR with deep residual learning prior achieves more
accurate reconstruction than standard MBIR with MRF prior
because the data-driven prior information quickly drives to
the optimal solution during iterative optimization.
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Fig. 1. Network architecture for deep residual learning: Given a noisy FBP image, 17-layer convolutional neural networks are
trained to predict a residual image. Note that we use batch normalizaton (BN) and rectified linear unit (ReLU) for efficient
training of deep neural networks.

2. MBIR WITH DEEP RESIDUAL LEARNING

Let x ∈ RN denote the image and y ∈ RM be the measured
CT scan data. In MBIR, the image is reconstructed by solving
the maximum a posteriori (MAP) estimation problem:

x̂ = argmin
x

1

2
||Ax− y||2W +

1

2σ2
Φ(x), (1)

where A ∈ RM×N is the system matrix which represents CT
scanner geometry, and W ∈ RM×M is a diagonal weight-
ing matrix which determines the influence of individual mea-
surements according to noise variance. The prior model term
Φ(x) is introduced to stabilize the estimate and enforce desir-
able image properties in the reconstructed image. The typical
prior models such as Markov Random Fields (MRF) penalize
local gradients in the image (e.g., Φ(x) =

∑
i

∑
j∈Ni

|xi −
xj |2 where Ni represents local neighborhood of pixel i).

2.1. Plug-and-Play for MBIR

The solution to eq.1 can be achieved using a variety of op-
timization methods, such as Iterative Coordinate Descent
(ICD) [21] and Ordered Subset (OS) [22]. However, these
optimization methods require the gradient computation which
constrains the prior model Φ(x) to be first-order differen-
tiable. Therefore, we instead use the alternating direction
method of multipliers (ADMM) [10, 11] which allows the
generalized prior model.

Toward this, we first split the variable x into v, resulting
in the following MAP estimation:

(x̂, v̂) = argmin
x,v
x=v

1

2
||Ax− y||2W +

1

2σ2
Φ(v). (2)

We solve this constrained optimization problem using the

augmented Lagrangian method.

L(x, v, u) =
1

2
||Ax−y||2W +

1

2σ2
Φ(v)+

1

2λ2
||x−v+u||22,

(3)
where u ∈ RN is a scaled dual variable and λ is a relative
weight parameter.

By first solving x with the fixed v and then solving for v
with x fixed in minimizing L(x, v, u), the ADMM iteratively
updates each variables as following.

x̂ = argmin
x

1

2
||Ax− y||2W +

1

2λ2
||x− x̃||22, (4)

v̂ = argmin
v

1

2σ2
Φ(v) +

1

2λ2
||ṽ − v||22, (5)

u← u+ (x̂− v̂), (6)

where x̃ = v̂ − u and ṽ = x̂ + u. It is worth noting that eq.
6 is not the optimization over u but the direct update on the
dual variable. Even though these procedures are not equiva-
lent to exact minimization of eq. 2, ADMM converges to the
approximate solution [9].

The solution of eq. 4 can be achieved via a simple gradient
descent algorithm approximating to the closed-form solution.

x̂ ≈ (ATWA +
1

λ2
I)−1(ATWy +

1

λ2
x̃) (7)

For eq. 5, it becomes the classic image denoising problem
which can be denoted as the function of ṽ.

v̂ = F (ṽ) = argmin
v
||ṽ − v||22 +

λ2

σ2
Φ(v). (8)

Therefore, we can use any image denoising operators which
do not have the explicit form of solution to represent the prior
model. We call this framework as Plug-and-Play (PnP) be-
cause we can incorporate the state-of-the-art image denoising
method into MBIR as a prior model.
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(a) FBP (b) Deep Residual Learning (c) Ground-truth

Fig. 2. Example of image denoising based on deep residual learning: (a) FBP input, (b) Denoised FBP by deep residual
learning, (c) Ground-truth. The display window of the intensity map is [800, 1200] HU. Cardiac ROI is zoomed in the red
rectangle. Note that deep residual learning significantly reduces the noise and enhances the resolution compared with FBP
while generating very close image to the fully converged ground-truth image.

2.2. Deep Residual Learning for Image Denoising

The goal of denoising is to find the mapping from the noisy
input image to the latent clean image (e.g., v̂ = F (ṽ)). In
order to find this mapping, we use the residual learning strat-
egy [17, 18, 19] where we predict the residual image (e.g.,
v̂ − ṽ) from the noisy input image via deep neural networks.

v̂ = F (ṽ) = R(ṽ) + ṽ. (9)

Note that the original mapping F will be closer to an identity
mapping than the residual mapping R because noisy image is
much more like the latent clean image than the residual image.
Thus, the residual mapping can be easily trained for deeper
neural networks while avoiding vanishing gradient issue.

Suppose we have noisy-clean image pairs {(ṽtrk , v̂trk )}Kk=1.
Then, we minimize the mean squared error between the de-
sired residual images and estimated ones from noisy input.

l(Θ) =
1

2K

K∑
k=1

||R(ṽtrk ; Θ)− (v̂trk − ṽtrk )||22, (10)

where Θ represents the trainable weight parameters in deep
neural networks.

The residual mapping R(·; Θ) is defined as the layers of
convolutional neural networks as shown in Fig. 1. First, we
apply 64 filters of 3×3 convolution kernel to generate fea-
ture maps and then utilize rectified linear units (ReLU) [23]
for neuron activation. Second, we apply 64 filters of 3×3×64
convolution kernel for 15 layers. The batch normalization unit
is added between convolution and ReLU to avoid internal co-
variate shift during mini-batch optimization [24]. Finally, we
generate the residual image by applying 1 filter of 3×3×64
convolution kernel.

By plugging the trained residual mapping R(·; Θ) into
eq. 5, 8 and 9, we can incorporate the deep residual learn-
ing based denoising operator into MBIR prior.

3. EXPERIMENTAL RESULTS

We validate our PnP MBIR with deep learning prior to the
data acquired from a GE Revolution CT scanner with 50cm
field of view. We collect two real patient scans of 256 slices
with size of 512×512. We dedicate one patient scan to train
the deep neural networks for image denoising and leave the
other scan for reconstruction.

A deep neural network is trained to learn the relation be-
tween noisy FBP and clean ground-truth reconstructed from
the same patient scan. For ground-truth, we generate the fully
converged reconstruction image by running standard MBIR
with 20 iterations. To create the training database, 256000
patches with the size of 40×40 are extracted from 256 im-
age pairs with data augmentation (e.g., horizontal and vertical
flips, 90 degree rotations). We use the ADAM method [25] for
optimization with gradually reduced learning rate from 10−3

to 10−5 with total 50 epochs. The size of mini-batch is set
to 128. The training procedures are implemented using Mat-
ConvNet toolbox and take approximately 4 hours on a GTX
TITAN X GPU.

Fig. 2 shows an example of the image denoising result via
deep residual learning on the unseen testing scan. In Fig. 2(a),
we observe that FBP is susceptible to noisy texture, particu-
larly inside the soft tissue (e.g., cardiac muscle) when CT scan
data is acquired at low dose. On the other hands, deep residual
learning greatly reduces the noise and improves spatial reso-
lution as depicted in Fig. 2(b). For reference, we also display
the fully converged ground-truth reconstruction after 20 itera-
tions in Fig. 2(c). Then, our deep residual learning generates
very close image to the fully converged ground-truth image in
terms of texture inside the soft tissue. It is worth noting that
computational time for image denoising based on the trained
neural networks is very low under 10ms per slice.

With the trained deep neural networks for image denois-
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(a) Standard MBIR (b) PnP MBIR (c) Ground-truth - Standard MBIR (d) Ground-truth - PnP MBIR

Fig. 3. Reconstruction results after 5 iterations: (a) Standard MBIR with MRF prior, (b) PnP MBIR with deep residual learning
prior, (c) Subtracted image between ground-truth and standard MBIR, (d) Subtracted image between ground-truth and PnP
MBIR. The display window of the intensity map is [800, 1200] HU for the reconstructed images ((a) and (b)) and [−100, 100]
HU for the subtracted images ((c) and (d)), respectively. Note that both standard MBIR and PnP MBIR improve the image
quality compared with FBP, while PnP MBIR produces closer image to the ground-truth image than standard MBIR.

ing, we perform PnP MBIR on the remaining scan. For com-
parison, we also generate the image from standard MBIR with
MRF prior [26]. Fig. 3 illustrates the reconstruction results
for both MBIR methods after 5 iterations. As displayed in
Fig. 3(a) and (b), the both methods improve the image qual-
ity in terms of noisy texture and spatial resolution compared
with initial FBP image. Then, we calculate the subtracted im-
ages from the fully converged ground-truth to standard MBIR
and PnP MBIR in Fig. 3(c) and (d), respectively. Our PnP
MBIR shows the benefit in reducing background noise and
DC offset over standard MBIR. This indicates that our PnP
MBIR converges faster than standard MBIR as deep residual
learning based prior quickly drives to the optimal solution.

For quantitative comparisons, we report the root mean
square difference (RMSD) for whole 3D volume between re-
construction results and the fully converged ground-truth in
Table 1. Our PnP MBIR with deep residual learning prior
significantly decreases the RMSD value from 24.35 HU to
5.99 HU compared with the standard MBIR with MRF prior,
reflecting more accurate reconstruction.

4. CONCLUSION

In this paper, we present a novel MBIR with the prior model
learned from a large dataset. Our method is based on the Plug-

Table 1. Root Mean Square Difference (RMSD) to Fully
Converged Ground-Truth

Standard MBIR with
MRF Prior

PnP MBIR with
Deep Learning Prior

24.35 HU 5.99 HU

and-Play (PnP) framework which allows us to integrate the
image denoising operator as a MBIR prior model. We use the
residual learning for image denoising to train the deep convo-
lutional neural networks which find the relation between the
image pairs of noisy FBP and fully converged MBIR. Results
on a real CT scan show that the deep residual learning is very
effective in reducing the noise and enhancing the resolution
in FBP. In addition, PnP MBIR with deep residual learning
prior significantly improves the convergence speed compared
with standard MBIR with MRF prior.
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