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ABSTRACT

In this paper, an on-line interactive method is proposed for
learning a linear classifier. This problem is studied within
the Active Learning (AL) framework where the learning al-
gorithm sequentially chooses unlabelled training samples and
requests their class labels from an oracle in order to learn the
classifier with the least queries to the oracle possible. Addi-
tionally, a constraint is introduced into this interactive learn-
ing process which limits the percentage of the samples from
one “unwanted” class under a certain threshold. An optimal
AL solution is derived and implemented with a sophisticated,
accurate and fast Bayesian Learning method, the Expecta-
tion Propagation (EP) and its performance is demonstrated
through numerical simulations.

Index Terms— Active Learning, Constrained Dynamic
Programming, Expectation Propagation

1. INTRODUCTION

In many learning scenarios, data are not delivered passively to
the learner but they have to be obtained interactively. In this
proactive approach, the learner sequentially designs questions
and queries an oracle in order to gain consecutively more and
more informative answers about a learning problem. In the
Machine Learning regime, this special class of learning prob-
lems is called Active Learning (AL). One of the first AL
pieces of work which had a great impact in the research
community and dealt with actively identifying regressors is
[1]. Later on, the Cognitive Radio research community man-
aged to connect the AL problem with Cutting Plane Methods
(CPMs) which basically tackled active classification prob-
lems [2,3]. The same approach was followed by the authors
of [4] who also applied CPMs to compression schemes.

A complementary approach to the AL problem is based
on its sequential nature. This iterative rationale is connected
to the Bayesian Experimental Design framework [5] which
in its turn is related to the theory of optimal Decision Mak-
ing. Researchers from the Decision Making field have ex-
ploited a Dynamic Programming (DP) approach to sequen-
tially design experiments [6]. The same framework has been
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used in [7] for state tracking with active observation control
where a Kalman-Like state estimator is developed and in [8]
for designing primary user system power probes for actively
learning interference channel gains. In this category, also
constrained AL problems were formulated and solved by re-
searchers in various fields which employed Constrained DP
[9, 10]. The authors of [11] accomplished to actively identify
human body states with biometric device sensing costs and
the authors of [12] achieved to manage a sensor network with
communication costs.

In this paper, we combine this Constrained DP framework
with a sophisticated Bayesian Learning tool, the EP [13], for
sequentially designing unlabelled data, basically feature vec-
tors chosen from a continuous high dimensional space, and
requesting their labels from an oracle. The purpose of this
Constrained Bayesian AL (CBAL) design method is to learn
a linear classifier with the minimum number of queries to the
oracle while setting a limit on the expected number of class
labels from a specific "unwanted” class. Moreover, an ana-
Iytical implementation of the EP is proposed for the first time
by utilizing recent advances in statistics from the economet-
rics research community [14]. The remainder of this paper is
structured as follows: Section II provides the Bayesian Learn-
ing formulation and presents the EP. Section III elaborates on
the optimal CBAL for a linear classifier. In Section IV, the
simulation results obtained from the application of the pro-
posed technique are shown and in Section V conclusions and
future work in this topic are given.

2. BAYESIAN LEARNING AND EXPECTATION
PROPAGATION

We begin by defining the normalized version of the unknown
linear classifier that we wish to learn:

+1

v={ 1]

where x is a feature vector in R™V and y is its corresponding
label. In this section, we present a probabilistic way to learn
the IV-dimensional parameter vector, h, of the linear classi-
fier. The true value of h will be denoted as h* from here

on. To describe Bayesian Learning in detail, first we need
to define the label conditional likelihood as the probability of

ifhx? <1

ifhxT >1 M
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y conditioned on the unknown parameter h* and the feature
vector x:

ify=4+landhx7 <1
ify=+1land h xT > 1
ify=—landhxT > 1
ify=—-landhxT <1

Prlylh = h*,x7] = @)

SO = O

This expression is actually a threshold likelihood metric
determined by the label observation, y, and the feature vec-
tor x. According to the version space duality [15], when we
deal with learning linear classifiers, feature vectors are hy-
perplanes in the parameter or version space and vice versa.
Hence, when a learning procedure tries to estimate the param-
eters of a hyperplane, the version, it actually tries to localize a
point in the parameter or version space. In addition, by com-
bining a feature vector and its respective label, an inequality is
obtained which in the h space, or version space, represents a
linear inequality. Therefore, the likelihood function may also
be thought of as a halfspace defined by x and y in the version
space.

Now, let us assume that following ¢ queries, or unlabelled
feature vectors, x¢.;—1) = {x(0),..,x(t — 1)}, the learner
has obtained ¢ responses, or labels, yo.(:—1) = {¥0, -» Y(t—1) }»
which all together constitute the data known until the (¢ — 1)
training sample pair, D;_1. After a new feature vector x(t)
and its label, y;, the h posterior probability density function
(pdf) is expressed as:

Prly,/h = h*,x(t)] fi(h)
Prly:|x(t), Ds—1]

which indicates the probability of where h* lies in the h space
given D;. Here, we have exploited the fact that the label y;
is conditionally independent of the previous labels yo.(;—1)
and feature vectors Xg,(;—1) given h = h* and x(t). More-
over, the denominator term is called the marginal likelihood
and even though it is difficult to calculate, it is actually a nor-
malization constant which guarantees that the posterior pdf
integrates to 1. Alternatively, the posterior pdf expressed in
(3) can be written in a non-recursive form as:

fry1(h) =

3

T Prly;|h = b, x(i)]
fen(h) = =5
11 P, Dict]

Jfo(h) “4)

where fo(h) is the prior pdf and again the denominator term
is a normalization factor whose computation will be shown
unnecessary.

2.1. The Expectation Propagation algorithm

Now, each likelihood function can be expressed as [;(h) =
Prly;|h = h* x(i )] and hence the likelihood function prod-

uct of (4) is now H {;(h), which is basically a product of

=0

halfspace indicator functions In this subsection, we show

how to approximate H I;(h) and thus the deriving posterior

pdf using EP [13]. The rationale of the EP is to approximate
this product by finding an approximation /; (h) for each /; (h).
This is done by initializing arbitrarily the likelihood function
approximations and iteratively filtering each one of them con-
sidering the rest approximations stable. This filtration process
is based on minimizing the Kullback-Leibler (KL) divergence

t . t

ofl;(h) [I l(h)andl;(h) [[ (k). A detailed algo-
i=0,i#j 1=0,i#j

rithmic description of EP is presented in Algo. 1.

Algorithm 1 The Expectation Propagation algorithm

Je(h)}

Initialize arbitrarily {Io(h),; (h), ...
fork=1: Ngp do

for j =0:tdo
l](h) =
t . ‘L
argmin KL ( ;(h) [[ G(h) [ ;h) [ ()
I;(n) i=0,i#j] i=0,i#]
end for
end for

Next, we show how to tackle analytically the KL diver-
gence minimization, the critical step of the EP algorithm,
without relying on numerical quadratures or independence
assumptions between the latent variables. This will lead
to greater accuracy and faster implementation of this so-
phisticated tool. Here, each approximation in the EP al-
gorithm is considered to be a multivariate normal (MVN)
pdf. Consequently, the product of MVN pdf’s, which ap-
pears in the KL divergence minimization step, based on
Gaussian_identities is also an MVN pdf. More specifi-
cally, if [;(h) = N(h; p;, 32;) for ¢ = 0,...,t, where p;
are the mean row Vectors and X; are the covariance matri-

ces, then their product, H I;(h), is an un-normalized MVN
pdf proport10nal to an MVN pdf, N/ (h iot, Xiot), Where

Et_ot - ZZ ’/'l’tot (Z I»Lz

are assumed to be row vectors.
Hence, the second part of the KL divergence in the core

- t

stage of the EP method, /;(h) ]
i=0,i7j
t

mation product in the first part, []
i=0,i7j
For notation simplification,

ot and all vectors

I;(h), and the approxi-

l;(h), are basically
un-normalized MVN pdf’s.

t - ~

[T &(h) will be symbolized from now on as {_;(h).
i=0,i#j
Now, as far as the KL divergence minimization is concerned,
when approximations within the exponential family are used,
then this is achieved by moment matching [16]. Moment
matching means that the two functions whose KL divergence

6664



needs to be minimized must have the same moments and
since the second function is an un-normalized MVN one, this
results to matching the O, 14 and 2,4 moments of the two
parts. This basically indicates that the function to be refined
in each EP step, I ;(h), must be adjusted so that the moments
of I;(h) [_;(h) are equal to the ones of /;(h) [_;(h).

Now, let us examine the function I;(h) I_;(h). First, we
have already shown that [_;(h) is an un-normalized MVN
function and we have described {;(h) as a halfspace indica-
tor function. Thus, /;(h) I_;(h) is actually a one-side trun-
cated multivariate Gaussian and what we need is to calculate
its Oyp, 1 and 2,4 moments, ¢, q and Q. This can be found
in detail in Appendix A of [17] where we utilized the moment
formulas for doubly truncated MVNs [14] after reformulating
them. Once these moments are computed, l~j (h) is defined as
an MVN pdf with covariance matrix Ej_l =Q ! - Z‘:jl.
and mean p; = (QQ ' —p_; ¥ 1) X;. We also need to
highlight that matching the 0,7, moments does not offer essen-
tially better approximations, because multiplying l}(h) with
a constant may lead to unwanted results in this iterative fil-
tration process. Still, we mentioned this earlier as part of the
moment matching process for the sake of completeness.

3. CONSTRAINED BAYESIAN ACTIVE LEARNING
OF A LINEAR CLASSIFIER

The goal of this paper is to sequentially design feature vectors,
x, whose labels are revealed to the learner one by one in order
to learn as fast as possible the parameter vector, h*, and while
ensuring that the number of feature vectors of class y = —1
for a specific query budget is always below a certain limit.
This means that assuming a limited number of N queries
and thus feature vectors, {x(0), ..., x(Nr — 1)} and their cor-
responding labels, {yo, ..., YN, —1}, we wish to minimize the
uncertainty of our knowledge about h*, formally represented
by the entropy of fx..(h), subject to maintaining the sum of
ys = —1, where t = 0,..., Np — 1, below a threshold and
which is equivalent to controlling the sum of y, = +1, where
t =0,...,Nr — 1, above a corresponding limit. In the pre-
vious section, we showed the recursive Bayesian update (3)
which modifies our knowledge about h* step by step. This
will be our main tool for handling the iterative nature of this
proactive feature vector design strategy.

3.1. The DP formulation of the Constrained Bayesian AL
problem

Next, we investigate the optimal training sample design policy
that should be chosen in each step of this recursive Bayesian
estimation process in order to optimally reduce the poste-
rior pdf entropy after Ny feature vectors, {x(0), ..., x(Np —

1)}, with their corresponding labels, yo.(n,—1), subject to
1 Np—1 1 Npr—1

!
N 2 M=y S@Torwn 3 gy=y1y > o where

1., is the indicator function, o' is the threshold ratio of
class y = —1 occurrences, « is the lower limit ratio of class
y = +1 occurrences and & = 1 — «’. From here on, we em-

ploy « for the formulation of our problem. The constraint can
Nr—1

also be written as Y, y: > (2a¢ — 1) Np. This multistage
t=0

constrained optimization problem can be expressed in the

spirit of DP [18] as finding the optimal query rule that maps
{fos s [np—1} to {x(0),..,x(Np — 1)} in order to achieve
the maximum average entropy reduction from the fy(h) to
the fn,.(h) pdf subject to the aforementioned constraint. In
a formal manner, we seek the optimal query/feature vector
design policy 75, . 1y = {x(0) = p*(fo), ... x(Np — 1) =
w*(fny—1)} which solves the following constrained opti-
mization problem over all possible label sequences derived
by this query policy:

max  E"[H(fo) = H(fn,)[x(N7 = 1), DNy 2] (52)

Nr—1

S.t. E™ E yt|X(NT — 1), DNT_2 > (20& — 1)NT
t=0
(5b)

where H is the entropy operator of a pdf and E™[.] is the
operator of the average value over all possible label sequences
derived by an abstract policy 7.

Before we continue though with the DP solution of our
constrained multistage problem, let us first redefine the multi-
variate cumulative distribution function (cdf) in a more “’nat-
ural” than the usual way. Assuming a hyperplane, x wT = 1,
we alternatively determine the cdf C' of a multivariate pdf f
as:

C(w)=PrlxwT <1]= / f(x) dVx. (6)
x wT<1

In our case, this means that the posterior cdf after the (¢ — 1)
step, Cy(x), is expressed as:

Ci(x) =Prlhx" <1lh=h*D; 4] =

h x7<1

fe(h) dVh.

(7

Using this cdf definition, the optimal feature vector de-

sign policy of the Constrained DP problem (5) is found

to be 75, _qy = {x(0) = Cy Hao), -, x(Np — 1) =

S Nr—k— S b,

C&;_l(aNT_l)} where og = a, oy, = W_}SO for

k =1,..,(Np — 1) and x(k) = C, *(ay) is equivalent to

Cr(x(k)) = ag. A detailed derivation of this solution can be
found in [17].

3.2. The Necessity of Exploration

Reducing the uncertainty of our knowledge about h* must be
performed by approaching this exact value uniformly from
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all directions. This means that the training samples in an
AL process must be diversified and this can be accomplished
by choosing hyperplanes in the version space of random di-
rection uniformly which promotes exploration. Therefore,
we need first to define how to uniformly sample a random
direction 6, where @ is a unit vector. This problem is re-
lated to the uniform unit hypersphere point picking which
has been thoroughly described in [3, 8]. Hence, in order to
produce a feature vector which represents a hyperplane of
random direction, x(t) must be parallel to a randomly gen-
erated 0, x(t) = 60 where 8 € R, and it must also satisfy
C¢(x(t)) = ay according to our previous analysis. In a formal
manner, this is expressed using (6) as:

ft(h) th = Ct(BG) = Q. (8)

h 8OT<1

At this point, we make use of the Gaussian approximation
of each step’s posterior pdf which we developed in Section

II with the help of EP. In accordance with that result, f;(h)
t—1

can be approximated by the normalized version of ] I;(h)
=0
which we denote as ft(h). So, (8) now becomes:
fe(h) dVi, = oy ©)

h BOT<1

1
F=1ag;er,c2)
where F~1(.) is the inverse cdf of the univariate normal pdf
with mean c; and variance co. Furthermore, c; = 6 7(t),

where fi(t) is the mean row vector of f;(h), and ¢ =
N N

> 0:0(X.i(1))T
i=1

covariance matrix of f;(h).

After some processing, we obtain that § =

, where X, ;(t) is the iz, column of the

4. RESULTS

In this section, we show the h™ estimation error achieved
by the proposed CBAL method depending on the number of

training samples. The h* estimation error metric at each time

step is defined as the normalized root-square error W

and basically demonstrates the learning efficiency of our
method. The estimated parameter vector at each step, fl(t),
is considered as the fi(¢) of the EP. The error figure results
are obtained as the average of the error metric defined ear-
lier over 100 random draws of parameter vectors h*. The
examined scenarios consider N = 5 with o« = { 0.7, 0.9}
and N = 10 with « = 0.7 and the “budget” of queries to
the oracle is considered to be N7 = 200. Additionally, for
the EP implementation, the outer loop iterations, Ngp, are
chosen to be 5 and the prior pdf is a MVN of sufficiently vast
circular covariance matrix.

Next, in Fig. 1 we examine the performance of the CBAL
technique for all the aforementioned scenarios. First, we ob-
serve that the number of required training samples to reach
a specific error percentage increases as the problem dimen-
sions, IV, grow. Second, as « increases, the necessary training
samples to achieve again a particular estimation error also in-
crease. Furthermore, a metric ;. is provided which exam-

ines the simulated ”wanted” class label occurrences, o, =
Np—1
> 1{yf:+1}

=0 . As far as the resulting o, metric is con-

cerned 1ts values are 0.68, 0.87 and 0.67 for o = 0.7 and
N =5,forac=0.9and N =5 and foraa = 0.7and N = 10
respectively.

10! T T T T
P CBAL for a=0.7 and N=5
EP CBAL for a=0.9 and N=5
EP CBAL for a=0.7 and N=10

Estimation error
-
o
o

<

20 40 60 80 100 120 140 160 180 200
Number of training samples

Fig. 1. Classifier estimation error vs number of training sam-
ples using the CBAL method

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an AL method in order to learn a
linear classifier as fast as possible and while limiting the ex-
pected ratio of labels from one “unwanted” class under a spe-
cific threshold. This problem was formulated within the Con-
strained DP framework and its optimal feature vector design
policy was implemented with the help of an advanced, fast
and accurate Bayesian Learning technique, the EP. The per-
formance of this method was demonstrated through numerical
simulations and we confirmed that the simulated metric for
the label ratio of the “wanted” class, a;m, 1S satisfactorily
close to the target, or design, ratio . As part of our future
work, the learning convergence rate of the proposed CBAL
method will be studied, since theoretical guarantees for the
number of iterations needed to approach the learning solution
within some error bound are an essential part of the AL set-
ting.
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