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ABSTRACT

In the context of wireless communications, we propose a deep learn-
ing approach to learn the mapping from the instantaneous state of
a frequency selective fading channel to the corresponding frame er-
ror probability (FEP) for an arbitrary set of transmission parameters.
We propose an abstract model of a bit interleaved coded modula-
tion (BICM) orthogonal frequency division multiplexing (OFDM)
link chain and show that the maximum likelihood (ML) estimator of
the model parameters estimates the true FEP distribution. Further,
we exploit deep neural networks as a general purpose tool to imple-
ment our model and propose a training scheme for which, even while
training with the binary frame error events (i.e., ACKs / NACKs), the
network outputs converge to the FEP conditioned on the input chan-
nel state. We provide simulation results that demonstrate gains in the
FEP prediction accuracy with our approach as compared to the tradi-
tional effective exponential SIR metric (EESM) approach for a range
of channel code rates, and show that these gains can be exploited to
increase the link throughput.

Index Terms— FEP, BICM-OFDM, Deep Learning, Neural
Networks, Link Adaptation.

1. INTRODUCTION

The efficiency of a radio link depends on its ability to adapt to the
stochastic radio channel conditions that typically vary over time (i.e.,
fading) as well as over the signal bandwidth (i.e., frequency selectiv-
ity). Practical radio systems perform this so-called “link adaptation”
by selecting the optimal transmission parameters in each frame that
fulfil some criteria related to, e.g., target error rates, throughput, or
latency etc. [1]. In this paper, we investigate the problem of predict-
ing the frame error probability (FEP) for an estimated channel state
in bit-interleaved coded modulation (BICM) orthogonal frequency
division multiplexing (OFDM) systems [2] [3]. Owing to their flex-
ibility and performance, BICM-OFDM systems have been widely
adopted by most of the modern radio air interfaces including those
for local wireless area networks (e.g., WiFi) and for cellular com-
munication such as Long Term Evolution for 4G, and recently, New
Radio for 5G [4].

In general for frequency selective channels, it is intractable to
compute the FEP conditioned on the frame channel state character-
ized by the received per-subcarrier signal to interference and noise
ratios (SINRs). Therefore, several approximate techniques for FEP
prediction have been developed that compress the per-subcarrier
SINRs to an approximate effective scalar metric, which is mapped
to pre-computed FEP values stored as lookup tables [5] [6] [7].

This work was partially supported by the Wallenberg Autonomous Sys-
tems and Software Program (WASP).

However, these techniques assume ideal channel coding perfor-
mance and do not take into account practical system impairments.
Further, the choice of a suitable compression function can be some-
what arbitrary and has been empirically shown to have a significant
impact on the FEP prediction performance [8].

As an alternative to the effective SINR approach, supervised
learning techniques that map the per-subcarrier SINR vector for each
frame to the corresponding FEP have been proposed [9] [10]. Dur-
ing the traning phase of these techniques, the model parameters are
selected to minimize the mean cost between the model output for
several frame channel state vectors and their Monte Carlo simulated
FEPs. With sufficient training, these techniques have been shown
to improve the realized link throughput of BICM-OFDM systems
compared to the effective SINR approach. However, the proposed
supervised learning techniques are limited by the accuracy of the
simulated training datasets and additionally do not provide any in-
sight into the optimality of the trained models.

In this paper, we cast the FEP prediction problem as a prob-
abilistic binary classification task, where the classes correspond to
frame error and success events (i.e., NACKs and ACKs) respectively,
and make the following three main contributions: (i) We propose an
abstract model of the BICM-OFDM link chain where the observa-
tions are the frame channel states and their binary frame error events
and show that, in the limit of infinite training samples, the maxi-
mum likelihood (ML) estimator of the model parameters estimates
the true FEP distribution, (ii) We use this model to develop a su-
pervised learning approach for FEP prediction based on deep neural
networks, where the training phase requires only the observed chan-
nel states and binary frame error events, thus mitigating the need
for simulations to measure the FEP, and (iii) We provide simulation
results to show that our approach improves the FEP prediction ac-
curacy, and consequently the link throughput, compared to the well-
studied exponential effective SIR metric (EESM) approach.

The rest of this paper is organized as follows: In Sec. 2, we
describe a typical BICM-OFDM wireless communication link and
propose an abstract system model along with an ML estimator of
the model parameters. Next in Sec. 3, we summarize the EESM ap-
proach for FEP prediction and introduce our deep learning approach.
Next in Sec. 4 we present simulation results for the FEP prediction
performance as well as the realized throughput for our two consid-
ered approaches and finally in Sec. 5, we conclude the paper.

2. BICM-OFDM SYSTEM AND ML ESTIMATION

2.1. System Model

We consider a BICM-OFDM link chain similar to the LTE down-
link and illustrate its block diagram in Fig. 1 [11]. Here, a “trans-
port block”, b = (b1, . . . , bT ) of information bits is first encoded
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Fig. 1. Block diagram of the BICM-OFDM link chain considered in this paper. The parameter selection module exploits knowledge of the
instantaneous channel state to select one out of several possible transmission parameter configurations in each frame.

by a channel encoder and subsequently bit-interleaved by a random
interleaver to generate the bit sequence l = (l1, . . . , lL). The inter-
leaved bits are then used to generate the “rate-matched” bit sequence
r = (r1, . . . , rMSJ) according to ri = li modL, i = 1, . . . ,MSJ ,
where M is the number of transmission subcarriers, S is the num-
ber of frame OFDM symbols, and J is the modulation order. The
channel code rate is thereforeR = T/MSJ . The rate matched bits
are mapped ontoMS modulated symbols by a labeling function that
assigns one out of 2J complex-valued constellation symbols to each
J-tuple of bits. Finally, a length-M IFFT operation is applied on
each group of M modulated symbols to generate the frame OFDM
symbolsX = (x1, . . . ,xS) and mapped onto physical resources.

The frame OFDM symbols are transmitted over the physical
channel resulting in the received signal ys = h � xs + gs, s =
1, . . . , S,where� denotes the Hadamard product, h is the complex-
valued vector of channel coefficients in the frequency domain, and
gs ∼ NM×1(0, σ2) is i.i.d. noise. We assume that the channel vec-
tor remains constant for the frame OFDM symbols (i.e., the chan-
nel is block fading). At the receiver, each received OFDM sym-
bol ys is multiplied by the elementwise inverse of the estimated
frequency-domain channel vector, followed by a length-M FFT op-
eration for OFDM de-multiplexing. The de-multiplexed symbols are
then mapped onto soft values through an inverse labeling operation,
de-interleaved, and decoded by the channel decoder to generate the
reconstructed bit sequence b̂ = (b̂1, . . . , b̂T ). We define the binary
frame error event at the receiver as

e =

{
0 if b̂ = b

1 if b̂ 6= b
. (1)

2.2. ML Estimation

The BICM-OFDM link chain described above can be approximated
as a stochastic non-linear function that generates a frame error event
with an unknown probability distribution for the frame channel state
and a particular choice of transmission parameters. In Fig. 2, we
illustrate an abstract model of the BICM-OFDM link chain, which
is parameterized by the model parameters θ and maps the observed
channel state characterized by the received per-subcarrier channel
SINRs, γ = (γ1 . . . , γM ), to the observed frame error event, .i.e.,

PEk|Γ(ek|γ;θ) = ρ
ek
k (1− ρk)1−ek , (2)

where the k ∈ 1, . . . ,K denotes the kth transmission parameter con-
figuration. Here, ρk = ρk(γ;θ) = PEk|Γ(Ek = 1|γ;θ) is the con-

ditional frame error probability (FEP) . In the rest of this section, we
show that the ML estimator of the model parameters asymptotically
estimates the true conditional FEPs.

The ML estimator [12] of the model parameters for n =
1, . . . , N frame realizations is defined as

θ̂ML = argmax
θ̂

K∑
k=1

N∏
n=1

PEk,Γ(e
n
k ,γ

n; θ̂)

= argmax
θ̂

∫ K∑
k=1

N∑
n=1

lnPEk|Γ(e
n
k |γn; θ̂)PΓ(γ)dγ

, argmax
θ̂
C(θ̂),where (3)

C(θ̂) =
K∑
k=1

(
1

N

N∑
n=1

lnPEk|Γ(e
n
k |γn; θ̂)

)
(4)

is the cost function to be maximized, and we have used the fact that
the channel state is independent of the model. In the limit of infinite
training samples, it follows by the law of large numbers that

C(θ̂) N→∞−−−−→
K∑
k=1

E{lnP (Ek|Γ; θ̂)} (5)

where P (Ek|Γ; θ̂) , PEk|Γ(Ek|Γ; θ̂) for brevity, and where the
expectation is taken over P (Ek,Γ;θ). We now subtract and add the
true pmf to the r.h.s. of Eq. (5) to obtain

C(θ̂) =
K∑
k=1

E{lnP (Ek|Γ; θ̂)− lnP (Ek|Γ;θ) + lnP (Ek|Γ;θ)}

= −
K∑
k=1

E

{
ln
P (Ek|Γ;θ)

P (Ek|Γ; θ̂)

}
+

K∑
k=1

E {lnP (Ek|Γ;θ)} .

(6)

The second term in (6) is independent of the argument to be
maximized. Further we observe that by multiplying and dividing the
first term with probability distribution PΓ(γ), we obtain
K∑
k=1

E

{
ln
P (Ek|Γ;θ)P (Γ)

P (Ek|Γ; θ̂)P (Γ)

}
=

K∑
k=1

E

{
ln
P (Ek,Γ;θ)

P (Ek,Γ; θ̂)

}
=

K∑
k=1

KL
{
P (Ek|Γ;θ)||P (Ek|Γ; θ̂)

}
, (7)
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Fig. 2. Abtract model of a BICM-OFDM link chain that maps the
observed channel state to the frame error events for k = 1, . . . ,K
transmission parameter configurations.

where KL(·||·) is the Kullback-Leibler divergence (KLD) between
the true and estimated pmfs. Given that the KLD is non-negative,
and equal to zero if and only if P (Ek|Γ;θ) = P (Ek|Γ; θ̂), it fol-
lows that the ML estimator converges to the true FEP distribution in
the limit of large N . Note however that P (Ek|Γ;θ) = P (Ek|Γ; θ̂)

does not necessarily imply that θ̂ML = θ as the ML estimate of θ
may be non-unique.

3. FEP PREDICTION TECHNIQUES

3.1. Effective SINR Approach

In this subsection we outline the EESM approach, where the the
channel state characterized by the per-subcarrier SINRs is com-
pressed to a scalar “effective” SINR for an equivalent AWGN
channel. The FEP for the kth transmission parameter configuration
is then predicted to be

ρ̂EESM
k (γ) = ρAWGN

k (gk(γ)), (8)

where gk(γ) = −βk log

(
1

M

M∑
m=1

exp

(
−γm
βk

))
(9)

is the EESM for channel state γ, and βk is a tunable parameter.
For the frequency selective channels commonly observed in practi-
cal systems, gk(γ) amounts to a lossy compression of the channel
state vector, since the original channel state can no longer be recov-
ered. The FEP for the equivalent AWGN channel, ρAWGN

k (gk(γ)),
is obtained by interpolating between several Monte Carlo simulated
FEP values for the AWGN channel. The optimal βk minmizes the
Euclidean distance between the predicted FEP and observed frame
errors for n = 1, . . . , N training frames, i.e.,

βopt
k = argmin

βk

N∑
n=1

|ρ̂EESM, n
k − enk |2. (10)

For large N , estimating βopt
k in this manner is equivalent to the tra-

ditional approach that minimizes the mean squared cost between the
predicted FEPs and and the measured FEPs obtained through Monte
Carlo simulations for the training frames [8].

3.2. Deep Learning Approach

The EESM approach described earlier relies on a scalar approxima-
tion of the channel state, which is obtained through a lossy com-
pression and therefore does not guarantee optimality of the the cor-
responding FEP prediction. In this subsection we describe our ap-
proach for FEP prediction based on deep neural networks, which dis-
criminatively learns the mapping between the (uncompressed) chan-
nel state vector and the corresponding FEPs for multiple transmis-
sion parameter configurations.

Neural networks have long been known as a powerful tool for
approximating a wide range of highly non-linear functions, how-
ever, their acceptance for implementation in practical systems has
been limited by an insufficient understanding of the models that they
learn from training data. Although a complete understanding of neu-
ral networks is still a topic of active research, several recent break-
throughs related to deep neural networks coupled with cheap com-
putational power have led to drastic performance improvements for
several challenging problems [13]. In this paper, we consider the
fully connected L−layered feedforward neural network illustrated
in Fig. 3, for which the output of the lth “hidden layer” with dimen-
sion dl can be described as

η(l) = φ(l)
(
W (l)η(l−1) + b(l)

)
, (11)

where W (l) is the trainable dl−1 × dl weight matrix, b(l) is the
trainable dl × 1 bias vector, and φ(l) is a fixed non-linear “activa-
tion” function. By simply substituting the system parameters θ with
neural network weights and biases, we allow the neural network to
learn the set of mappings ρk(γ; θ̂) for k = 1, . . . ,K from data.

It has been shown previously that an ordering of the per-
subcarrier SINRs can be used to sufficiently parameterize the frame
error rate while reducing the training requirements [9]. Therefore in
this paper, we use the sorted per-subcarrier SINR vector, γ̃, as the
input to the network, i.e., η(0) , γ̃ = (γ̃1, . . . , γ̃M ). The activation
function for the each of the non-output layers can be any con-
tinuously differentiable non-linear function within some practical
constraints [13]. For the output layer, we choose sigmoid activation
function φ(L)(x) = 1/(1 + e−x) and interpret the network outputs
as the predicted FEPs, i.e., η(L) , ρ̂NN = (ρ̂NN

1 , . . . , ρ̂NN
K ). We

choose the cross-entropy loss between the network outputs and the
frame error events as the cost function, i.e.,

C(θ̂) = 1

K

K∑
k=1

ek ln ρ̂
NN
k + (1− ek) ln(1− ρ̂NN

k ) (12)

=
1

K

K∑
k=1

lnPEk|Γ(ek|γ; θ̂), (13)

where the latter expression is obtained using Eq. (2). By observing
the direct correspondence between Eqs. (4) and (13), we observe that
minimizing the neural network cost function over n = 1, . . . , N
training frames is equivalent to ML estimation of the neural network
parameters, which we have shown to estimate the true FEPs.

Fig. 3. Neural network layout that maps the channel state character-
ized by the sorted per-subcarrier SINR values to the FEP for each of
the K transmission parameter configurations.
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It is crucial to point out that there is no guarantee that the neu-
ral network trained using stochastic gradient decent will converge to
the ML estimate of the network parameters, however, our simulation
results indicate that the neural network does indeed provide good es-
timates of ρk(γ; θ̂). Further, the result obtained above is equivalent
to the conclusions of a previous analysis of neural networks [14].
However, we believe that it is instructive to demonstrate this result
in the context of ML estimation as well.

3.3. FEP Prediction for Throughput Maxmization

In this paper, we study the selection of the optimal channel code
rate Rk, k ∈ {1, . . . ,K} that maximizes the link throughput over
a fading channel. Therefore for each FEP prediction approach, we
select the channel code rate that maximizes the predicted expected
throughput in that frame, i.e., kEESM = argmaxk Tk(1−ρEESM

k ), and
kNN = argmaxk Tk(1−ρNN

k ) , where Tk =MSJRk is the number
of transmitted information bits when the kth channel code rate is se-
lected. The realized throughput over N evaluted frames is therefore
T EESM = 1

N

∑
n T

n
kEESM(1 − enkEESM) and T NN = 1

N

∑
n T

n
kNN(1 −

enkNN) respectively, where enk denotes the actual frame error event for
the kth channel code rate in the nth frame.

4. NUMERICAL RESULTS

In this section we provide simulation results for the FEP prediction
accuracy and the achieved link throughput for our proposed deep
learning approach and contrast it with the EESM approach perfor-
mance. The simulation parameters are listed in Table 1. We use
open source Python signal processing and communication libraries
to foster reproducibility of the demonstrated results described in this
section, and utilize Tensorflow for the neural network implementa-
tion and evaluations [15] [16].

We assume perfect knowledge of the channel at the transmitter
as well as the receiver, i.e., γ = |h|2/σ2. The neural network com-
prises 3 hidden layers with dimensions [60, 10, 60] respectively and
each hidden layer employs a Rectified Linear Unit (ReLU) activation
function [13]. The training datasets for EESM and neural network
approaches are generated using 104 frames for each channel code
rate. The test dataset for throughput maximization comprises 103

realizations for 10 evenly spaced long term average SINR values in
the range [−10, 20] dB.

Table 1. Simulation Parameters
Simulation Parameter Value
Channel Model Extended Pedestrian A [17]
Max. Doppler Spread 3 Hz
Number of OFDM Symbols (S) 12
Number of Subcarriers (M ) 600
Channel Coding Turbo + Repetition
Channel Code Rates (Rk) [0.01, 0.02..., 0.30]

We train the neural network parameters iteratively be employing
an ADAM optimizer [13]. The Root Mean Square Error (RMSE)
of the FEP prediction performance versus the number of neural net-
work training steps is shown in Fig. 4. We observe that the neural
network learns to improve the FEP prediction by iteratively training
its parameters, and outperforms the EESM approach after a few it-
erations. The throughput performance with the EESM and our deep
learning approach is shown in Fig. 5. We observe that our approach
increases the throughput compared to the EESM approach.

Fig. 4. RMSE of the FEP prediction error for EESM (blue, solid)
and deep learning (red, solid) approaches for the simulation setup in
Table 1. The neural network iteratively learns model parameters that
improve its FEP prediction accuracy compared to EESM approach.

Fig. 5. Link throughput for EESM (blue, solid) and deep learn-
ing (red, solid) based rate selection that maximizes the expected
throughput in each frame. The upper bound “Genie” curve (black,
solid) is obtained by simulating each channel code code rate for each
frame and picking the largest transport block that is successful. The
lower bound “Fixed Code Rate” curves (gray, dashed) are obtained
by fixing the channel code rate over the entire test dataset.

5. CONCLUSIONS

In this paper, we have proposed a deep learning approach for FEP
prediction that learns the mapping between the frame channel state
characterized by the per-subcarrier SINRs and the FEPs for arbitrary
transmission parameter configurations. Further by utilizing a train-
ing scheme that relies only on the observed channel state and the bi-
nary frame error events, our approach is shown to improve the FEP
prediction accuracy and consequently increase the link throughput.
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